Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 040302    DOI: 10.1088/1674-1056/ad1b40
GENERAL Prev   Next  

Integer multiple quantum image scaling based on NEQR and bicubic interpolation

Shuo Cai(蔡硕)1,2, Ri-Gui Zhou(周日贵)1,2,†, Jia Luo(罗佳)1,2,4,‡, and Si-Zhe Chen(陈思哲)3
1 College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China;
2 Research Center of Intelligent Information Processing and Quantum Intelligent Computing, Shanghai 201306, China;
3 College of Merchant Marine, Shanghai Maritime University, Shanghai 201306, China;
4 School of Mathematics and Computational Science, Shangrao Normal University, Shangrao 334001, China
Abstract  As a branch of quantum image processing, quantum image scaling has been widely studied. However, most of the existing quantum image scaling algorithms are based on nearest-neighbor interpolation and bilinear interpolation, the quantum version of bicubic interpolation has not yet been studied. In this work, we present the first quantum image scaling scheme for bicubic interpolation based on the novel enhanced quantum representation (NEQR). Our scheme can realize synchronous enlargement and reduction of the image with the size of 2n×2n by integral multiple. Firstly, the image is represented by NEQR and the original image coordinates are obtained through multiple CNOT modules. Then, 16 neighborhood pixels are obtained by quantum operation circuits, and the corresponding weights of these pixels are calculated by quantum arithmetic modules. Finally, a quantum matrix operation, instead of a classical convolution operation, is used to realize the sum of convolution of these pixels. Through simulation experiments and complexity analysis, we demonstrate that our scheme achieves exponential speedup over the classical bicubic interpolation algorithm, and has better effect than the quantum version of bilinear interpolation.
Keywords:  quantum image processing      image scaling      bicubic interpolation      quantum circuit  
Received:  27 June 2023      Revised:  10 December 2023      Accepted manuscript online:  05 January 2024
PACS:  03.67.-a (Quantum information)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  07.05.Pj (Image processing)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: Project supported by the Scientific Research Fund of Hunan Provincial Education Department, China (Grant No. 21A0470), the Natural Science Foundation of Hunan Province, China (Grant No. 2023JJ50268), the National Natural Science Foundation of China (Grant Nos. 62172268 and 62302289), and the Shanghai Science and Technology Project, China (Grant Nos. 21JC1402800 and 23YF1416200).
Corresponding Authors:  Ri-Gui Zhou, Jia Luo     E-mail:  rgzhou@shmtu.edu.cn;luojia@shmtu.edu.cn

Cite this article: 

Shuo Cai(蔡硕), Ri-Gui Zhou(周日贵), Jia Luo(罗佳), and Si-Zhe Chen(陈思哲) Integer multiple quantum image scaling based on NEQR and bicubic interpolation 2024 Chin. Phys. B 33 040302

[1] Feynman R P 1982 Int. J. Theor. Phys. 21 467
[2] Shor P W 1994 Proceedings of 35th Annual Symposium on Foundations of Computer Science pp. 124——134
[3] Grover L K 1996 Proceedings of the 28th Annual ACM symposium on the Theory of Computing pp. 212——219
[4] Venegas-Andraca S and Bose S 2003 Proc. SPIE 5105, Quantum Information and Computation August 4 2003
[5] Latorre J I 2005 arXiv:quant-ph/0510031[hep-ph]
[6] Le P Q, Dong F and Hirota K 2011 Quantum Inf. Process. 10 63
[7] Zhang Y, Lu K, Gao Y and Wang M 2013 Quantum Inf. Process. 12 2833
[8] Jiang N and Wang L 2015 Quantum Inf. Process. 14 1559
[9] Jiang N, Wang J and Mu Y 2015 Quantum Inf. Process. 14 4001
[10] Fan P, Zhou R G and Jing N 2016 Inf. Sci. 340 191
[11] Sang J, Wang S and Niu X 2016 Quantum Inf. Process. 15 37
[12] Zhou R G, Tan C and Fan P 2017 Mod. Phys. Lett. B 31 1750184
[13] Zhou R G, Hu W, Fan P and Ian H 2017 Sci. Rep. 7 2511
[14] Zhou R G, Liu X and Luo J 2017 Int. J. Theor. Phys. 56 2966
[15] Li P and Liu X 2018 Int. J. Quantum Inf. 16 1850031
[16] Yan F, Zhao S, Venegas-Andraca S E and Hirota K 2021 Digital Signal Processing 117 103149
[17] Gao C, Zhou R G, Li X and Li Y C 2022 Quantum Inf. Process. 21 270
[18] Gao C, Zhou R G and LI X 2023 Chin. Phys. B 32 050303
[19] Yao X W, Wang H, Liao Z, Chen M C, Pan J, Li J, Zhang K, Lin X, Wang Z, Luo Z, Zheng W, Li J, Zhao M, Peng X and Suter D 2017 Phys. Rev. X 7 031041
[20] Ali A E, Abdel-Galil H and Mohamed S 2020 Quantum Inf. Process. 19 238
[21] Luo J, Zhou R G, Hu W W, Li Y and Luo G F 2022 Chin. Phys. B 31 040302
[22] Zhang Y, Lu K, Xu K, Gao Y and Wilson R 2015 Quantum Inf. Process. 14 1573
[23] Huo F, Sun X and Ren W 2020 Multimed Tools Appl. 79 2447
[24] Keys R 1981 IEEE Trans. Acoust., Speech, Signal Process. 29 1153
[25] Le P Q, Iliyasu A M, Dong F and Hirota K 2011 Theoretical Computer Science 412 1406
[26] Ruiz-Perez L and Garcia-Escartin J C 2017 Quantum Inf. Process. 16 152
[27] Thapliyal H and Ranganathan N 2009 Proceedings of the IEEE Computer Society Annual Symposium on VLSI, Tampa pp. 229——234
[28] Thapliyal H and Ranganathan N 2011 2011 11th IEEE Conference on Nanotechnology (IEEE-NANO), IEEE pp. 1430——1435
[29] Munoz-Coreas E and Thapliyal H 2019 IEEE Trans. Comput. 68 729
[30] Li P, Liu X and Xiao H 2017 Int. J. Theor. Phys. 56 3690
[31] Li H, Jiang N, Wang Z, Wang J and Zhou R 2021 Int. J. Theor. Phys. 60 2037
[32] Wang D, Liu Z H, Zhu W M and Li S Z 2012 Comput. Sci. 39 302
[33] Lu X, Jiang N, Hu H and Ji Z 2018 Int. J. Theor. Phys. 57 2575
[34] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press)
[35] Kotiyal S, Thapliyal H and Ranganathan N 2014 2014 27th International Conference on VLSI Design and 2014 13th International Conference on Embedded Systems 2014 27th International Conference on VLSI Design pp. 545——350
[1] Quantum circuit-based proxy blind signatures: A novel approach and experimental evaluation on the IBM quantum cloud platform
Xiaoping Lou(娄小平), Huiru Zan(昝慧茹), and Xuejiao Xu(徐雪娇). Chin. Phys. B, 2024, 33(5): 050307.
[2] Analysis of learnability of a novel hybrid quantum—classical convolutional neural network in image classification
Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Shuang Wang(王爽), Rui Wang(王睿), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2024, 33(4): 040303.
[3] Proposal for sequential Stern-Gerlach experiment with programmable quantum processors
Meng-Jun Hu(胡孟军), Haixing Miao(缪海兴), and Yong-Sheng Zhang(张永生). Chin. Phys. B, 2024, 33(2): 020303.
[4] Anomalous non-Hermitian dynamical phenomenon on the quantum circuit
Chenxiao Dong(董陈潇), Zhesen Yang(杨哲森), Jinfeng Zeng(曾进峰), and Jiangping Hu(胡江平). Chin. Phys. B, 2023, 32(7): 070305.
[5] A new method of constructing adversarial examples for quantum variational circuits
Jinge Yan(颜金歌), Lili Yan(闫丽丽), and Shibin Zhang(张仕斌). Chin. Phys. B, 2023, 32(7): 070304.
[6] Variational quantum semi-supervised classifier based on label propagation
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Chong-Qiang Ye(叶崇强). Chin. Phys. B, 2023, 32(7): 070309.
[7] Quantum color image scaling based on bilinear interpolation
Chao Gao(高超), Ri-Gui Zhou(周日贵), and Xin Li(李鑫). Chin. Phys. B, 2023, 32(5): 050303.
[8] A backdoor attack against quantum neural networks with limited information
Chen-Yi Huang(黄晨猗) and Shi-Bin Zhang(张仕斌). Chin. Phys. B, 2023, 32(10): 100306.
[9] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[10] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[11] Low-overhead fault-tolerant error correction scheme based on quantum stabilizer codes
Xiu-Bo Chen(陈秀波), Li-Yun Zhao(赵立云), Gang Xu(徐刚), Xing-Bo Pan(潘兴博), Si-Yi Chen(陈思怡), Zhen-Wen Cheng(程振文), and Yi-Xian Yang(杨义先). Chin. Phys. B, 2022, 31(4): 040305.
[12] Universal quantum circuit evaluation on encrypted data using probabilistic quantum homomorphic encryption scheme
Jing-Wen Zhang(张静文), Xiu-Bo Chen(陈秀波), Gang Xu(徐刚), and Yi-Xian Yang(杨义先). Chin. Phys. B, 2021, 30(7): 070309.
[13] Interaction induced non-reciprocal three-level quantum transport
Sai Li(李赛), Tao Chen(陈涛), Jia Liu(刘佳), and Zheng-Yuan Xue(薛正远). Chin. Phys. B, 2021, 30(6): 060314.
[14] Novel quantum secret image sharing scheme
Gao-Feng Luo(罗高峰), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文). Chin. Phys. B, 2019, 28(4): 040302.
[15] Modulation of energy spectrum and control of coherent microwave transmission at single-photon level by longitudinal field in a superconducting quantum circuit
Xueyi Guo(郭学仪), Hui Deng(邓辉), Hekang Li(李贺康), Pengtao Song(宋鹏涛), Zhan Wang(王战), Luhong Su(苏鹭红), Jie Li(李洁), Yirong Jin(金贻荣), Dongning Zheng(郑东宁). Chin. Phys. B, 2018, 27(7): 074206.
No Suggested Reading articles found!