Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 060504    DOI: 10.1088/1674-1056/accb4b
Special Issue: SPECIAL TOPIC — Celebrating the 100th Anniversary of Physics Discipline of Xiamen University
SPECIAL TOPIC—Celebrating the 100th Anniversary of Physics Discipline of Xiamen University Prev   Next  

Accelerator-mode islands and superdiffusion in double-kicked rotor

Fengdi Wang(王风涤)1 and Ping Fang(方萍)1,2,†
1 School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 State Key Laboratory of Information Photonics and Optical Communications, Beijing 100876, China
Abstract  This paper presents a theoretical investigation of the presence of acceleration islands in the phase space of double-kicked rotor (DKR) systems, which can lead to superdiffusive behavior. We establish the conditions for the existence of period-1 acceleration centers and subsequently calculate the stability conditions for both period-1 and period-2 accelerate mode islands. A detailed analysis of local and global diffusion in the vicinity of the islands and the stickiness regions is provided. It is demonstrated that the mean stickiness time decays exponentially when the phase point is located in the interior of the island. Moreover, the phase point undergoes a power-law decay with a power equal to approximately 5 when entering the sticky region. These findings offer a foundation for future exploration of quantum dynamics in the DKR system.
Keywords:  superdiffuision      accelerator-mode islands      double-kicked rotor  
Received:  21 February 2023      Revised:  23 March 2023      Accepted manuscript online:  07 April 2023
PACS:  05.45.Ac (Low-dimensional chaos)  
  05.60.Cd (Classical transport)  
  05.45.Mt (Quantum chaos; semiclassical methods)  
  45.05.+x (General theory of classical mechanics of discrete systems)  
Corresponding Authors:  Ping Fang     E-mail:  pingfang@bupt.edu.cn

Cite this article: 

Fengdi Wang(王风涤) and Ping Fang(方萍) Accelerator-mode islands and superdiffusion in double-kicked rotor 2023 Chin. Phys. B 32 060504

[1] Dana I and Fishman S1985 Physica D 17 63
[2] Chirikov B V1979 Phys. Rep. 52 263
[3] Izrailev F M1990 Phys. Rep. 196 299
[4] Haake F 2001 Quantum Signatures of Chaos (Berlin: Springer)
[5] Karabanov A and Morozov A2014 Chaos, Solitons and Fractals 69 201
[6] Rechester A B and White R B 1981 Phys. Rev. Lett. 81 4044
[7] Cary J R, Meiss J D and Bhattacharjee A1981 Phys. Rev. A 23 2744
[8] Karney C2005 Physica D 8 360
[9] Ishizaki R, Horita T, Kobayashi T and Mori H1991 Prog. Theor. Phys. 85 1013
[10] Ouchi K, Mori N, Horita T and Mori H1991 Prog. Theor. Phys. 85 687
[11] Harsoula M and Contopoulos G2018 Phys. Rev. E 97 022215
[12] Manos T and Robnik M2014 Phys. Rev. E 89 022905
[13] Wallis G 2010 Springer 60 547
[14] Benkadda S, Kassibrakis S, White R B and Zaslavsky G M1997 Phys. Rev. E 55 4909
[15] Meiss J D 1980 Phys. Rev. A 34 2375
[16] Birkhoff and D G 1913 T. Am. Math. Soc. 14 14
[17] Birkhoff G D1926 Acta Mathematica 47 297
[18] Harsoula M, Karamanos K and Contopoulos G2019 Phys. Rev. E 99 032203
[19] Zaslavsky G M and Meiss J 1999 Physics of Chaos in Hamiltonian systems (London: Imperial College Press)
[20] Contopoulos G1971 Astron. J. 76 147
[21] Efthymiopoulos C, Contopoulos G and Voglis N 1999 Int. Astron. Union Colloq. 73 221
[22] Lozej R, Lukman D and Robnik M2021 Phys. Rev. E 103 012204
[23] Barash O and Dana I2007 Phys. Rev. E 75 056209
[24] Li W, Chen S G and Wang G R2001 Phys. Lett. A 281 334
[25] Wang J and Gong J2008 Phys. Rev. A 77 031405
[26] Zhou L and Gong J2018 Phys. Rev. A 97 063603
[27] Tao M A and Shu-Min L I2008 Chin. Phys. Lett. 25 1968
[28] Fishman S, Guarneri I and Rebuzzini L2002 Phys. Rev. Lett. 89 084101
[29] Fang P and Wang J 2016 Sci. China: Phys., Mech. Astron. 59 7
[30] Wang J, Guarneri I, Casati G and Gong J2011 Phys. Rev. Lett. 107 234104
[31] Bi H, Qi G, Hu J and Wu Q2020 Chin. Phys. B 29 020502
[32] Zhao W L and Jie Q2020 Chin. Phys. B 29 080302
[33] Stocklin M M A and Monteiro T S2005 Phys. Rev. E 74 026210
[34] Godun R M, D'Arcy M, Oberthaler M K, Summy G S and Burnett K2000 Phys. Rev. A 62 013411
[35] Rom-Kedar V and Zaslavsky G1999 Chaos 9 697
[36] Meiss J D, Miguel N, Simó C and Vieiro A2018 Nonlinearity 31 5615
[37] Iomin A, Fishman S and Zaslavsky G2002 Phys. Rev. E 65 036215
[38] Contopoulos G and Harsoula M2010 Int. J. Bifurcation Chaos 20 2005
[1] Unstable periodic orbits analysis in the Qi system
Lian Jia(贾莲), Chengwei Dong(董成伟), Hantao Li(李瀚涛), and Xiaohong Sui(眭晓红). Chin. Phys. B, 2023, 32(4): 040502.
[2] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[3] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[4] Extremely hidden multi-stability in a class of two-dimensional maps with a cosine memristor
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超), Hai-Bo Jiang(姜海波), Wei-Peng Lyu(吕伟鹏), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(10): 100503.
[5] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[6] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
[7] A class of two-dimensional rational maps with self-excited and hidden attractors
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超),Hai-Bo Jiang(姜海波), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(3): 030503.
[8] Embedding any desired number of coexisting attractors in memristive system
Chunbiao Li(李春彪), Ran Wang(王然), Xu Ma(马旭), Yicheng Jiang(姜易成), and Zuohua Liu(刘作华). Chin. Phys. B, 2021, 30(12): 120511.
[9] A memristive map with coexisting chaos and hyperchaos
Sixiao Kong(孔思晓), Chunbiao Li(李春彪), Shaobo He(贺少波), Serdar Çiçek, and Qiang Lai(赖强). Chin. Phys. B, 2021, 30(11): 110502.
[10] A secure image protection algorithm by steganography and encryption using the 2D-TSCC
Qi Li(李琦), Xingyuan Wang(王兴元), He Wang(王赫), Xiaolin Ye(叶晓林), Shuang Zhou(周双), Suo Gao(高锁), and Yunqing Shi(施云庆). Chin. Phys. B, 2021, 30(11): 110501.
[11] An image encryption algorithm based on improved baker transformation and chaotic S-box
Xing-Yuan Wang(王兴元), Huai-Huai Sun(孙怀怀), and Hao Gao(高浩). Chin. Phys. B, 2021, 30(6): 060507.
[12] Analysis and implementation of new fractional-order multi-scroll hidden attractors
Li Cui(崔力), Wen-Hui Luo(雒文辉), and Qing-Li Ou(欧青立). Chin. Phys. B, 2021, 30(2): 020501.
[13] A novel class of two-dimensional chaotic maps with infinitely many coexisting attractors
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超), Hai-Bo Jiang(姜海波), Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2020, 29(6): 060501.
[14] Hidden attractors in a new fractional-order discrete system: Chaos, complexity, entropy, and control
Adel Ouannas, Amina Aicha Khennaoui, Shaher Momani, Viet-Thanh Pham, Reyad El-Khazali. Chin. Phys. B, 2020, 29(5): 050504.
[15] New chaotical image encryption algorithm based on Fisher-Yatess scrambling and DNA coding
Xing-Yuan Wang(王兴元), Jun-Jian Zhang(张钧荐), Fu-Chen Zhang(张付臣), Guang-Hui Cao(曹光辉). Chin. Phys. B, 2019, 28(4): 040504.
No Suggested Reading articles found!