Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 070705    DOI: 10.1088/1674-1056/accd4c
RAPID COMMUNICATION Prev   Next  

Neural network analytic continuation for Monte Carlo: Improvement by statistical errors

Kai-Wei Sun(孙恺伟)1 and Fa Wang(王垡)1,2,†
1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China;
2 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Abstract  This study explores the use of neural network-based analytic continuation to extract spectra from Monte Carlo data. We apply this technique to both synthetic and Monte Carlo-generated data. The training sets for neural networks are carefully synthesized without "data leakage". We find that the training set should match the input correlation functions in terms of statistical error properties, such as noise level, noise dependence on imaginary time, and imaginary time-displaced correlations. We have developed a systematic method to synthesize such training datasets. Our improved algorithm outperforms the widely used maximum entropy method in highly noisy situations. As an example, our method successfully extracted the dynamic structure factor of the spin-1/2 Heisenberg chain from quantum Monte Carlo simulations.
Keywords:  neural network      analytic continuation      quantum Monte Carlo  
Received:  17 February 2023      Revised:  13 April 2023      Accepted manuscript online:  16 April 2023
PACS:  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  02.70.Ss (Quantum Monte Carlo methods)  
Fund: FW acknowledges support from the National Natural Science Foundation of China (Grant Nos. 12274004 and 11888101). Quantum Monte Carlo simulations are performed on TianHe-1A of National Supercomputer Center in Tianjin.
Corresponding Authors:  Fa Wang     E-mail:  wangfa@pku.edu.cn

Cite this article: 

Kai-Wei Sun(孙恺伟) and Fa Wang(王垡) Neural network analytic continuation for Monte Carlo: Improvement by statistical errors 2023 Chin. Phys. B 32 070705

[1] White S, Scalapino D, Sugar R and Bickers N 1989 Phys. Rev. Lett. 63 1523
[2] Silver R N, Sivia D S and Gubernatis J E 1990 Phys. Rev. B 41 2380
[3] Henelius P, Sandvik A W, Timm C and Girvin S 2000 Phys. Rev. B 61 364
[4] Sandvik A W 1998 Phys. Rev. B 57 10287
[5] Shao H and Sandvik A W 2023 Phys. Rep. 1003 1
[6] Sandvik A W 2016 Phys. Rev. E 94 063308
[7] LeCun Y, Bengio Y and Hinton G 2015 Nature 521 436
[8] Yoon H, Sim J H and Han M J 2018 Phys. Rev. B 98 245101
[9] Arsenault L F, Neuberg R, Hannah L A and Millis A J 2017 Inverse Problems 33 115007
[10] Xie X, Bao F, Maier T and Webster C 2021 Analytic continuation of noisy data using adams bashforth residual neural network Tech. rep. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
[11] Huang D and Yang Y F 2022 Phys. Rev. B 105 075112
[12] Zhang R, Merkel M E, Beck S and Ederer C 2022 Phys. Rev. Research 4 043082
[13] Yao J, Wang C, Yao Z and Zhai H 2022 Machine Learning: Science and Technology 3 025010
[14] Fournier R, Wang L, Yazyev O V and Wu Q 2020 Phys. Rev. Lett. 124 056401
[15] Kaufman S, Rosset S, Perlich C and Stitelman O 2012 ACM Transactions on Knowledge Discovery from Data (TKDD) 6 1
[16] Jordan M I and Mitchell T M 2015 Science 349 255
[17] Domingos P 2012 Communications of the ACM 55 78
[18] Giles C L and Maxwell T 1987 Appl. Opt. 26 4972
[19] Novak R, Bahri Y, Abolafia D A, Pennington J and Sohl-Dickstein J 2018 arXiv preprint arXiv:1802.08760
[20] Albawi S, Mohammed T A and Al-Zawi S 2017 International conference on engineering and technology (ICET) (IEEE) pp. 1-6
[21] He K, Zhang X, Ren S and Sun J 2016 Deep residual learning for image recognition Proceedings of the IEEE conference on computer vision and pattern recognition pp. 770-778
[22] Yu F,Wang D, Shelhamer E and Darrell T 2018 Deep layer aggregation Proceedings of the IEEE conference on computer vision and pattern recognition p. 2403-2412
[23] Ramachandran P, Zoph B and Le Q V 2017 arXiv preprint arXiv:1710.05941
[24] Agarap A F 2018 arXiv preprint arXiv:1803.08375
[25] Iosifidis A and Tefas A 2022 Deep learning for robot perception and cognition
[26] Srivastava N, Hinton G, Krizhevsky A, Sutskever I and Salakhutdinov R 2014 The journal of machine learning research 15 1929
[27] Joyce J M 2011 Kullback-leibler divergence International encyclopedia of statistical science (Springer) pp. 720-722
[28] Chollet F, et al. 2015 Keras https://keras.io
[29] Abadi M, et al. 2015 Tensor Flow: Large-scale machine learning on heterogeneous systems software
[30] Kingma D P and Ba J 2014 arXiv preprint arXiv:1412.6980
[31] Kraberger G J, Triebl R, Zingl M and Aichhorn M 2017 Phys. Rev. B 96 155128
[32] Bergeron D and Tremblay A M S 2016 Phys. Rev. E 94 023303
[33] Altmann A, Toloşi L, Sander O and Lengauer T 2010 Bioinformatics 26 1340
[34] Sandvik A W 1999 Phys. Rev. B 59 R14157
[35] Okamoto S, Alvarez G, Dagotto E and Tohyama T 2018 Phys. Rev. E 97 043308
[36] Pan S J and Yang Q 2010 IEEE Transactions on knowledge and data engineering 22 1345
[1] Recent progress on deep learning-based disruption prediction algorithm in HL-2A tokamak
Zongyu Yang(杨宗谕), Yuhang Liu(刘宇航), Xiaobo Zhu(朱晓博), Zhengwei Chen(陈正威), Fan Xia(夏凡), Wulyu Zhong(钟武律), Zhe Gao(高喆), Yipo Zhang(张轶泼), and Yi Liu(刘仪). Chin. Phys. B, 2023, 32(7): 075202.
[2] Lightweight and highly robust memristor-based hybrid neural networks for electroencephalogram signal processing
Peiwen Tong(童霈文), Hui Xu(徐晖), Yi Sun(孙毅), Yongzhou Wang(汪泳州), Jie Peng(彭杰),Cen Liao(廖岑), Wei Wang(王伟), and Qingjiang Li(李清江). Chin. Phys. B, 2023, 32(7): 078505.
[3] ESR-PINNs: Physics-informed neural networks with expansion-shrinkage resampling selection strategies
Jianan Liu(刘佳楠), Qingzhi Hou(侯庆志), Jianguo Wei(魏建国), and Zewei Sun(孙泽玮). Chin. Phys. B, 2023, 32(7): 070702.
[4] Semi-analytical steady-state response prediction for multi-dimensional quasi-Hamiltonian systems
Wen-Wei Ye(叶文伟), Lin-Cong Chen(陈林聪), Zi Yuan(原子), Jia-Min Qian(钱佳敏), and Jian-Qiao Sun(孙建桥). Chin. Phys. B, 2023, 32(6): 060506.
[5] A progressive surrogate gradient learning for memristive spiking neural network
Shu Wang(王姝), Tao Chen(陈涛), Yu Gong(龚钰), Fan Sun(孙帆), Si-Yuan Shen(申思远), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2023, 32(6): 068704.
[6] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040207.
[7] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[8] Atomistic insights into early stage corrosion of bcc Fe surfaces in oxygen dissolved liquid lead-bismuth eutectic (LBE-O)
Ting Zhou(周婷), Xing Gao(高星), Zhiwei Ma(马志伟), Hailong Chang(常海龙), Tielong Shen(申铁龙), Minghuan Cui(崔明焕), and Zhiguang Wang(王志光). Chin. Phys. B, 2023, 32(3): 036801.
[9] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[10] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[11] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
[12] Hyperparameter on-line learning of stochastic resonance based threshold networks
Weijin Li(李伟进), Yuhao Ren(任昱昊), and Fabing Duan(段法兵). Chin. Phys. B, 2022, 31(8): 080503.
[13] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[14] Ionospheric vertical total electron content prediction model in low-latitude regions based on long short-term memory neural network
Tong-Bao Zhang(张同宝), Hui-Jian Liang(梁慧剑),Shi-Guang Wang(王时光), and Chen-Guang Ouyang(欧阳晨光). Chin. Phys. B, 2022, 31(8): 080701.
[15] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
No Suggested Reading articles found!