Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(1): 170-179    DOI: 10.1088/1674-1056/17/1/030
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Wavelet--fractional Fourier transforms

Yuan Lin(袁琳)
College of Mathematics Physics and Information, Zhejiang Normal University, Jinhua 321004, China
Abstract  This paper extends the definition of fractional Fourier transform (FRFT) proposed by Namias V by using other orthonormal bases for $L^{2}\left( R \right)$ instead of Hermite--Gaussian functions. The new orthonormal basis is gained indirectly from multiresolution analysis and orthonormal wavelets. The so defined FRFT is called wavelets-fractional Fourier transform.
Keywords:  multiresolution analysis      fractional Fourier transform      wavelets-fractional Fourier transform  
Accepted manuscript online: 
PACS:  42.30.Kq (Fourier optics)  
Fund: Project supported by the Young People Foundation of Zhejiang Normal University, China (Grant No KYJ06Y07150).

Cite this article: 

Yuan Lin(袁琳) Wavelet--fractional Fourier transforms 2008 Chin. Phys. B 17 170

[1] From fractional Fourier transformation to quantum mechanical fractional squeezing transformation
Lv Cui-Hong (吕翠红), Fan Hong-Yi (范洪义), Li Dong-Wei (李东韡). Chin. Phys. B, 2015, 24(2): 020301.
[2] Relations between chirp transform and Fresnel diffraction, Wigner distribution function and a fast algorithm for chirp transform
Shi Peng(石鹏) , Cao Guo-Wei(曹国威), and Li Yong-Ping(李永平). Chin. Phys. B, 2010, 19(7): 074201.
[3] Two mutually conjugated tripartite entangled states and their fractional Fourier transformation kernel
LÜ Cui-Hong(吕翠红), Fan Hong-Yi(范洪义), and Jiang Nian-Quan(姜年权). Chin. Phys. B, 2010, 19(12): 120303.
[4] Novel uncertainty relations associated with fractional Fourier transform
Xu Guan-Lei(徐冠雷), Wang Xiao-Tong(王孝通), and Xu Xiao-Gang(徐晓刚) . Chin. Phys. B, 2010, 19(1): 014203.
[5] Fractional Fourier transform of Lorentz beams
Zhou Guo-Quan(周国泉). Chin. Phys. B, 2009, 18(7): 2779-2784.
[6] Fractional Fourier transform of Cantor sets: further numerical study
Gao Qiong(高穹), Liao Tian-He(廖天河), and Cui Yuan-Feng(崔远峰). Chin. Phys. B, 2008, 17(6): 2018-2022.
[7] Image recovery from double amplitudes in fractional Fourier domain
Liao Tian-He (廖天河), Gao Qiong (高穹). Chin. Phys. B, 2006, 15(2): 347-352.
[8] Fractional Fourier transform for partially coherent beam in spatial-frequency domain
Cai Yang-Jian (蔡阳健), Lin Qiang (林强). Chin. Phys. B, 2004, 13(7): 1025-1032.
[9] High order generalized permutational fractional Fourier transforms
Ran Qi-Wen (冉启文), Yuan Lin (袁琳), Tan Li-Ying (谭立英), Ma Jing (马晶), Wang Qi (王骐). Chin. Phys. B, 2004, 13(2): 178-186.
No Suggested Reading articles found!