Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 094501    DOI: 10.1088/1674-1056/ac65f8

A modified heuristics-based model for simulating realistic pedestrian movement behavior

Wei-Li Wang(王维莉)1,†, Hai-Cheng Li(李海城)1, Jia-Yu Rong(戎加宇)1, Qin-Qin Fan(范勤勤)1, Xin Han(韩新)2, and Bei-Hua Cong(丛北华)2
1 Institute of Logistics Science and Engineering, Shanghai Maritime University, Shanghai 201306, China;
2 Shanghai Institute of Disaster Prevention and Relief, Tongji University, Shanghai 200092, China
Abstract  Pedestrian movement simulation models are used in various areas, such as building evacuation, transportation engineering, and safety management of large events. It also provides effective means to uncover underlying mechanisms of collective behaviors. In this work, a modified heuristics-based model is presented. In this model, the potential collisions in the moving process are explicitly considered. Meanwhile, a series of simulations is conducted in two typical scenarios to demonstrate the influence of critical parameters on model performance. It is found that when facing a wide obstacle in a corridor, the larger the visual radius, the earlier the pedestrian starts to make a detour. In addition, when a pedestrian observes a large crowd walking toward him, he chooses to make a detour and moves in the flow in a uniform direction. Furthermore, the model can reproduce the lane formation pedestrian flow phenomena in relatively high-density situations. With the increase of pedestrian visual radius and the weight of potential collision resistance, more stable pedestrian lanes and fewer moving-through-the-counterflow pedestrians can be observed. In terms of model validation, the density-speed relationship of simulation results accords well with that of the published empirical data. Our results demonstrate that the modified heuristics-based model can overcome the deficiency of the original model, and reproduce more realistic pedestrian movement behavior.
Keywords:  heuristics-based model      lane formation      pedestrian flow      potential collisions  
Received:  27 December 2021      Revised:  14 March 2022      Accepted manuscript online:  11 April 2022
PACS:  45.70.Vn (Granular models of complex systems; traffic flow)  
  07.05.Tp (Computer modeling and simulation)  
  89.75.Fb (Structures and organization in complex systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 71904116) and the Fund from the Shanghai Science and Technology Commission, China (Grant No. 19DZ1209600).
Corresponding Authors:  Wei-Li Wang     E-mail:

Cite this article: 

Wei-Li Wang(王维莉), Hai-Cheng Li(李海城), Jia-Yu Rong(戎加宇), Qin-Qin Fan(范勤勤), Xin Han(韩新), and Bei-Hua Cong(丛北华) A modified heuristics-based model for simulating realistic pedestrian movement behavior 2022 Chin. Phys. B 31 094501

[1] Ma Y, Yuen R K K and Lee E W M 2016 Physica A 450 333
[2] Tang T Q, Shao Y X, Chen L and Shang H Y 2017 J. Adv. Transp. 2017 073583
[3] Zhao H T, Thrash T, Kapadia M, Wolff K, Holscher C, Helbing D and Schinazi V R 2020 J. R. Soc. Interface 17 20200116
[4] Wang W L, Lo S M, Liu S B and Kuang H 2014 Transp. Res. Pt. C-Emerg. Technol. 44 21
[5] Seyfried A, Steffen B, Klingsch W and Boltes M 2005 J. Stat. Mech.-Theory Exp. 2005 P10002
[6] Hughes R L 2002 Transp. Res. Pt. B-Methodol. 36 507
[7] Burstedde C, Klauck K, Schadschneider A and Zittartz J 2001 Physica A 295 507
[8] Luo L, Liu X B, Fu Z J, Ma J and Liu F X 2020 Physica A 550 124149
[9] Li X L, Guo F, Kuang H and Zhou H G 2017 Physica A 487 47
[10] Lu L L, Ren G, Wang W and Wang Y 2014 Chin. Phys. B 23 088901
[11] Muramatsu M, Irie T and Nagatani T 1999 Physica A 267 487
[12] Lo S M, Fang Z, Lin P and Zhi G S 2004 Fire Saf. J. 39 169
[13] Kuang H, Li X L, Wei Y F, Song T and Dai S Q 2010 Chin. Phys. B 19 070517
[14] Helbing and Molnar 1995 Phys. Rev. E 51 4282
[15] Helbing D, Farkas I and Vicsek T 2000 Nature 407 487
[16] Zhang D W, Zhu H T, Qiu S and Wang B Y 2019 Math. Probl. Eng. 2019 9237674
[17] Qu Y, Xiao Y, Wu J, Tang T and Gao Z 2018 Physica A 492 1153
[18] Parisi D R, Gilman M and Moldovan H 2009 Physica A 388 3600
[19] Chen X, Treiber M, Kanagaraj V and Li H 2018 Transport Reviews 38 625
[20] Moussaid M, Helbing D and Theraulaz G 2011 Proc. Natl. Acad. Sci. USA 108 6884
[21] Degond P, Appert-Rolland C, Moussaid M, Pettre J and Theraulaz G 2013 Journal of Statistical Physics 152 1033
[22] Guo N, Hu M B and Jiang R 2017 Physica A 465 109
[23] Guo N, Jiang R, Wong S C, Hao Q Y, Xue S Q, Xiao Y and Wu C Y 2020 Transp. Res. Pt. B-Methodol. 139 259
[24] Qu Y C, Gao Z Y, Orenstein P, Long J C and Li X G 2015 Transportmetrica B-Transp. Dyn. 3 1
[25] Xiao Y, Gao Z Y, Qu Y C and Li X G 2016 Transp. Res. Pt. C-Emerg. Technol. 68 566
[26] Wu X S, Yue H, Liu Q M, Zhang X and Shao C F 2021 Chin. Phys. B 30 018902
[27] Guo N, Liu H X, Jiang R, Jia B and Hu M B 2018 Int. J. Mod. Phys. C 29 1850069
[28] Wang L T and Shen S F 2019 Transportmetrica B-Transp. Dyn. 7 1117
[29] Jia X L, Feliciani C, Yanagisawa D and Nishinari K 2019 Physica A 531 121735
[30] Wang W L, Zhang J J, Li H C and Xie Q M 2020 Physica A 560 125188
[31] Li Q R, Liu Y, Kang Z X, Li K and Chen L 2020 Chaos 30 013129
[32] Gao Y, Chen T, Luh P B and Zhang H 2017 Fire Technol. 53 331
[33] Cristin J, Mendez V and Campos D 2019 Sci. Rep. 9 18488
[34] Yamori K 1998 Psychological Review 105 530
[35] Hankin B D and Wright R A 1958 Journal of the Operational Research Society 9 81
[36] Mōri M and Tsukaguchi H 1987 Transportation Research Part A:General 21 223
[1] Influence of bottleneck on single-file pedestrian flow: Findings from two experiments
Cheng-Jie Jin(金诚杰), Rui Jiang(姜锐), Da-Wei Li(李大韦). Chin. Phys. B, 2020, 29(8): 088902.
[2] Model and application of bidirectional pedestrian flows at signalized crosswalks
Tao Zhang(张涛), Gang Ren(任刚), Zhi-Gang Yu(俞志钢), Yang Yang(杨阳). Chin. Phys. B, 2018, 27(7): 078901.
[3] Analysis of dynamic features in intersecting pedestrian flows
Hai-Rong Dong(董海荣), Qi Meng(孟琦), Xiu-Ming Yao(姚秀明), Xiao-Xia Yang(杨晓霞), Qian-Ling Wang(王千龄). Chin. Phys. B, 2017, 26(9): 098902.
[4] Bottleneck effects on the bidirectional crowd dynamics
Xiao-Xia Yang(杨晓霞), Hai-Rong Dong(董海荣), Xiu-Ming Yao(姚秀明), Xu-Bin Sun(孙绪彬). Chin. Phys. B, 2016, 25(12): 128901.
[5] Study on bi-directional pedestrian movement using ant algorithms
Sibel Gokce, Ozhan Kayacan. Chin. Phys. B, 2016, 25(1): 010508.
[6] Time-dependent Ginzburg–Landau equation for lattice hydrodynamic model describing pedestrian flow
Ge Hong-Xia (葛红霞), Cheng Rong-Jun (程荣军), Lo Siu-Ming (卢兆明). Chin. Phys. B, 2013, 22(7): 070507.
[7] The Korteweg-de Vires equation for the bidirectional pedestrian flow model considering the next-nearest-neighbor effect
Xu Li (徐立), Lo Siu-Ming (卢兆明), Ge Hong-Xia (葛红霞). Chin. Phys. B, 2013, 22(12): 120508.
[8] Self-organized phenomena of pedestrian counter flow in a channel under periodic boundary conditions
Li Xiang (李翔), Duan Xiao-Yin (段晓茵), Dong Li-Yun (董力耘). Chin. Phys. B, 2012, 21(10): 108901.
[9] Multi-grid simulation of pedestrian counter flow with topological interaction
Ma Jian(马剑), Song Wei-Guo(宋卫国), and Liao Guang-Xuan(廖光煊). Chin. Phys. B, 2010, 19(12): 128901.
[10] Lattice-gas simulation of escaping pedestrian flow in corridor
Qiu Bing (邱冰), Tan Hui-Li (谭惠丽), Kong Ling-Jiang (孔令江), Liu Mu-Ren (刘慕仁). Chin. Phys. B, 2004, 13(7): 990-995.
No Suggested Reading articles found!