|
|
Terahertz spectroscopy and lattice vibrational analysis of pararealgar and orpiment |
Ya-Wei Zhang(张亚伟)1,2, Guan-Hua Ren(任冠华)3,†, Xiao-Qiang Su(苏晓强)4,‡, Tian-Hua Meng(孟田华)4, and Guo-Zhong Zhao(赵国忠)5 |
1. Institute of History for the Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China; 2. School of Yungang Ology, Shanxi Datong University, Datong 037009, China; 3. Department of Mathematics and Physics, North China Electric Power University, Baoding 071003, China; 4. Institute of Solid State Physics, Shanxi Provincial Key Laboratory of Microstructure Electromagnetic Functional Materials, Shanxi Datong University, Datong 037009, China; 5. Department of Physics, Capital Normal University, Beijing 100048, China |
|
|
Abstract Terahertz time-domain spectroscopy (THz-TDS) is an effective nondestructive and noninvasive tool for investigating sulfur-containing pigments. Combined with Raman spectroscopy and vibrational mode analysis, it is significant for artifact identification and conservation. In this work, the terahertz absorption spectra of pararealgar (As4S4) and orpiment (As2S3) samples mixed with polytetrafluoroethylene (PTFE) are characterized in a range from 0.2 THz to 2.2 THz, and their distinctive peaks are observed, respectively. Meanwhile, qualitative analysis is also implemented by using Raman spectroscopy as a complementary technique. The lattice vibrations are simulated by using solid-state density functional theory (ss-DFT), illustrating different characteristic absorption peaks for specific crystalline structures and dynamic properties. This work provides a reliable database of sulfur-containing pigments for using the THz technology to actually analyze and diagnose cultural relics.
|
Received: 04 May 2022
Revised: 27 June 2022
Accepted manuscript online:
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61805129 and 11874245), the National Key Research and Development Program of China (Grant No. 2021YFB3200100), and the Yungang Special Fund of Shanxi Datong University, China (Grant No. 2020YGZX005). |
Corresponding Authors:
Guan-Hua Ren, Xiao-Qiang Su
E-mail: rengh@ncepu.edu.cn;xiaoqiang.su@sxdtdx.edu.cn
|
Cite this article:
Ya-Wei Zhang(张亚伟), Guan-Hua Ren(任冠华), Xiao-Qiang Su(苏晓强), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠) Terahertz spectroscopy and lattice vibrational analysis of pararealgar and orpiment 2022 Chin. Phys. B 31 103302
|
[1] Bonazzi P, Menchetti S and Pratesi G 1995 Am. Mineral. 80 400 [2] Mullen D J E and Nowacki W 1972 Zeitschrift für Kristallographie 136 48 [3] Wehling B, Vandenabeele P, Moens L, Klockenkämper R, Bohlen A V, Hooydonk G V and Reu M D 1999 Mikrochim. Acta 130 253 [4] Rosi F, Miliani C, Borgia I, Brunetti B and Sgamellotti A 2004 J. Raman Spectrosc. 35 610 [5] Kleist E M, Koch Dandolo C L, Guillet J P, Mounaix P and Korter T M 2019 J. Phys. Chem. A 123 1225 [6] Nam J Y, Han K, Ji J E, Kim S, Lee H, Kang D, Han M and Yang I S 2016 Vib. Spectrosc. 85 181 [7] Derbyshire A and Withnall R 1999 J. Raman Spectrosc. 30 185 [8] Snickt G V D, Nolf W D, Vekemans B and Janssens K 2008 Appl. Phys. A 92 59 [9] Roldan M L, Centeno S A, Rizzo A and Dyke Y V 2014 MRS Online Proc. Libr. 1656 15 [10] Lee J E, Lee H, Kim J, Jung T S, Kim J H, Kim J, Baek N Y, Song Y N, Lee H H and Kim J H 2021 ACS Omega 6 13802 [11] Romano F P, Pappalardo L, Masini N, Pappalardo G and Rizzo F 2011 Microchem. J. 99 449 [12] Ottalagano F V, Domínguez S A and Bozzano P B 2015 Bol. Mus. Chil. Arte Precolomb. 20 57 [13] Wang L, Zhu J, Yan Y, Xie Y and Wang C 2009 J. Raman Spectrosc. 40 998 [14] Vermeulen M, Saverwyns S, Coudray A and Sanyova J 2018 Dyes and Pigments 149 290 [15] Seco-Martorell C, López-Domínguez V, Arauz-Garofalo G, Redo-Sanchez A, Palacios J and Tejada J 2013 Opt. Express 21 17800 [16] Adam A J L, Planken P C M, Meloni S and Dik J 2009 Opt. Express 17 3407 [17] Fukunaga K, Ogawa Y, Hayashi S I and Hosako I 2008 IEICE Electron. Express 5 223 [18] Jackson J B, Mourou M, Whitaker J F, Duling I N, Williamson S L, Menu M and Mourou G A 2008 Opt. Commun. 281 527 [19] Shen Y C, Yang X Y and Zhang Z J 2020 Chin. Phys. B 29 078705 [20] Zhu J, Zhan H L, Zhao K, Miao X Y, Zhou Q and Yue W Z 2019 Chin. Phys. B 28 020204 [21] Ma J L, Xu K J, Li Z, Jin B B, Fu R, Zhang C H, Ji Z M, Zhang C, Chen Z X, Chen J and Wu P H 2009 Acta Phys. Sin. 58 6101 (in Chinese) [22] Jiang Y Y, Li G M, Lv M, Ge H Y and Zhang Y 2020 Chin. Phys. B 29 098705 [23] Yang Y P, Singh R and Zhang W L 2014 Chin. Phys. B 23 128702 [24] Yang Y P, Zhai D W, Zhang Z W and Zhang C L 2017 J Infrared Milli Terahz Waves 38 1232 [25] Kleist E M and Korter T M 2020 Anal. Chem. 92 1211 [26] Squires A D, Lewis R A, Zaczek A J and Korter T M 2017 J. Phys. Chem. A 121 3423 [27] D'Angelo F, Mics Z, Bonn M and Turchinovich D 2014 Opt. Express 22 12475 [28] Duvillaret L, Garet F and Coutaz J L 1999 Appl. Opt. 38 409 [29] Liu C, Yue L Y, Wang X K, Sun W F and Zhang Y 2012 Spectrosc. Spect. Anal. 32 1471 (in Chinese) [30] Duvillaret L, Garet F and Coutaz J L 1996 IEEE J. Sel. Top. Quantum Electron. 2 739 [31] Jepsen P U and Fischer B M 2005 Opt. Lett. 30 29 [32] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K and Payne M C 2005 Z. Kristallogr. 220 567 [33] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [34] Nastova I, Grupče O, Minčeva-Šukarova B, Turan S, Yaygingol M, Ozcatal M, Martinovska V and Jakovlevska-Spirovska Z 2012 J. Raman Spectrosc. 43 1729 [35] Clark R J H 1995 Chem. Soc. Rev. 24 187 [36] Ballirano P and Maras A 2006 Eur. J. Mineral. 18 589 [37] Zhou L, Chen L, Ren G, Zhu Z, Zhao H, Wang H, Zhang W and Han J 2018 Phys. Chem. Chem. Phys. 20 27205 [38] Shen Y C, Upadhya P C and Linfield E H 2003 Appl. Phys. Lett. 82 2350 [39] Takahashi M, Okamura N, Fan X Y, Shirakawa H and Minamide H 2017 J. Phys. Chem. A 121 2558 [40] Walther M, Fischer B M and Jepsen P U 2003 Chem. Phys. 288 261 [41] Tossell J A 1996 Mineral Spectroscopy: A Tribute to Roger G. Burns 5 9
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|