|
|
Tetrapartite entanglement measures of W-class in noninertial frames |
Ariadna J. Torres-Arenas1, Edgar O. López-Zúñiga1,2, J. Antonio Saldaña-Herrera1,2, Qian Dong1, Guo-Hua Sun3, Shi-Hai Dong1 |
1 Laboratorio de Información Cuántica, CIDETEC, Instituto Politécnico Nacional, UPALM, CDMX 07700, Mexico;
2 Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza NL, 66450, Mexico;
3 Catedrática CONACyT, Centro de Investigación en Computación, Instituto Politécnico Nacional, UPALM, CDMX 07738, Mexico |
|
|
Abstract We present the entanglement measures of a tetrapartite W-class entangled system in a noninertial frame, where the transformation between Minkowski and Rindler coordinates is applied. Two cases are considered. First, when one qubit has uniform acceleration whilst the other three remain stationary. Second, when two qubits have nonuniform accelerations and the others stay inertial. The 1-1 tangle, 1-3 tangle, and whole entanglement measurements π4 and Π4, are studied and illustrated with graphics through their dependence on the acceleration parameter rd for the first case and rc and rd for the second case. It is found that the negativities (1-1 tangle and 1-3 tangle) and π-tangle decrease when the acceleration parameter rd or in the second case rc and rd increase, remaining a nonzero entanglement in the majority of the results. This means that the system will be always entangled except for special cases. It is shown that only the 1-1 tangle for the first case vanishes at infinite accelerations, but for the second case the 1-1 tangle disappears completely when r>0.472473. An analytical expression for the von Neumann information entropy of the system is found and we note that it increases with the acceleration parameter.
|
Received: 27 March 2019
Revised: 17 April 2019
Accepted manuscript online:
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
04.70.Dy
|
(Quantum aspects of black holes, evaporation, thermodynamics)
|
|
Fund: Project partially supported by the CONACYT, Mexico under the Grant No. 288856-CB-2016, partially by 20190234-SIP-IPN, Mexico, and partially by the program XXVIII Verano de la Investigación Científica 2018 supported by the Academia Mexicana de Ciencias. |
Corresponding Authors:
Shi-Hai Dong
E-mail: dongsh2@yahoo.com
|
Cite this article:
Ariadna J. Torres-Arenas, Edgar O. López-Zúñiga, J. Antonio Saldaña-Herrera, Qian Dong, Guo-Hua Sun, Shi-Hai Dong Tetrapartite entanglement measures of W-class in noninertial frames 2019 Chin. Phys. B 28 070301
|
[1] |
Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[2] |
Bennett C H, Bernstein E, Brassard G and Vazirani U 1997 SIAM Journal on Computing 26 1510
|
[3] |
Bouwmeester D, Ekert A and Zeilinger A 2000 The Physics of Quantum Information (Berlin: Springer-Verlag)
|
[4] |
Peres A and Terno D R 2004 Rev. Mod. Phys. 76 93
|
[5] |
Fuentes-Schuller I and Mann R B 2005 Phys. Rev. Lett. 95 120404
|
[6] |
Hwang M R, Park D and Jung E 2011 Phys. Rev. A 83 012111
|
[7] |
Li Y, Liu C, Wang Q, Zhang H and Hu L 2016 Optik 127 9788
|
[8] |
Alsing P M, Fuentes-Schuller I, Mann R B and Tessier T E 2006 Phys. Rev. A 74 032326
|
[9] |
Smith A and Mann R B 2012 Phys. Rev. A 86 012306
|
[10] |
Shi X 2017 Chin. Phys. B 26 120303
|
[11] |
Geetha P J, Yashodamma K O and Sudha 2015 Chin. Phys. B 24 110302
|
[12] |
Li J J and Wang Z X 2010 Chin. Phys. B 19 100310
|
[13] |
Feng L J, Zhang Y J, Zhang L and Xia Y J 2015 Chin. Phys. B 24 110305
|
[14] |
Yao Y, Xiao X, Ge L, Wang X G and Sun C P 2014 Phys. Rev. A 89 042336
|
[15] |
Khan S 2014 Ann. Phys. 348 270
|
[16] |
Khan S, Khan N A and Khan M K 2014 Commu. Theor. Phys. 61 281
|
[17] |
Bruschi D E, Dragan A, Fuentes I and Louko J 2012 Phys. Rev. D 86 025026
|
[18] |
Martín-Martínez E and Fuentes I 2011 Phys. Rev. A 83 052306
|
[19] |
Takagi S 1986 Progress of Theoretical Physics Supplement 88 1
|
[20] |
Martín-Martínez E, Garay L J and León J 2010 Phys. Rev. D. 82 064006
|
[21] |
Verstraete F, Dehaene J, De Moor B and Verschelde H 2002 Phys. Rev. A. 65 052112
|
[22] |
Dür W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
|
[23] |
Wang J and Jing J 2011 Phys. Rev. A. 83 022314
|
[24] |
Socolovsky M 2013 Rindler Space and Unruh Effect, arXiv:1304.2833v2 [gr-qc]
|
[25] |
Nakahara M, Wan Y and Sasaki Y 2013 Diversities in Quantum Computation and Quantum Information (Singapore: World Scientific)
|
[26] |
Oliveira D S and Ramos R V 2010 Quantum Information Processing 9 497
|
[27] |
Sabín C and García-Alcaine G 2008 Euro. Phys. J. D 48 435
|
[28] |
Popescu S and Rohrlich D 1997 Phys. Rev. A 56 R3319
|
[29] |
von Neumann J 1996 Mathematical Foundations of Quantum Mechanics (New Jersey: Princeton University Press)
|
[30] |
Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275
|
[31] |
Bengtsson I and Życzkowski K 2006 Geometry of Quantum States: An Introduction to Quantum Entanglement (New York: Cambridge University Press)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|