|
|
Optimized monogamy and polygamy inequalities for multipartite qubit entanglement |
Jia-Bin Zhang(张嘉斌)1,†, Zhi-Xiang Jin(靳志祥)1,2,‡, Shao-Ming Fei(费少明)1,§, and Zhi-Xi Wang(王志玺)1,¶ |
1 School of Mathematical Sciences, Capital Normal University, Beijing 100048, China; 2 School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract We investigate the monogamy and polygamy inequalities of arbitrary multipartite quantum states, and provide new classes of monogamy and polygamy inequalities of multiqubit entanglement in terms of concurrence, entanglement of formation, negativity, and Tsallis-q entanglement, respectively. We show that these new monogamy and polygamy inequality relations are tighter than the existing ones with detailed examples.
|
Received: 21 January 2021
Revised: 02 March 2021
Accepted manuscript online: 24 March 2021
|
PACS:
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12075159 and 11847209), Beijing Natural Science Foundation (Grant No. Z190005), Academy for Multidisciplinary Studies, Capital Normal University, the Academician Innovation Platform of Hainan Province, Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology (Grant No. SIQSE202001), the China Postdoctoral Science Foundation funded project (Grant No. 2019M650811), and the China Scholarship Council (Grant No. 201904910005). |
Corresponding Authors:
Jia-Bin Zhang, Zhi-Xiang Jin, Shao-Ming Fei, Zhi-Xi Wang
E-mail: 2150501006@cnu.edu.cn;zxjinzhixiang@126.com;feishm@cnu.edu.cn;wangzhx@cnu.edu.cn
|
Cite this article:
Jia-Bin Zhang(张嘉斌), Zhi-Xiang Jin(靳志祥), Shao-Ming Fei(费少明), and Zhi-Xi Wang(王志玺) Optimized monogamy and polygamy inequalities for multipartite qubit entanglement 2021 Chin. Phys. B 30 100310
|
[1] Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306 [2] Terhal B M 2004 IBM J. Res. Dev. 48 71 [3] Koashi M and Winter A 2004 Phys. Rev. A 69 022309 [4] Osborne T J and Verstraete F 2006 Phys. Rev. Lett. 96 220503 [5] Ou Y C and Fan H 2007 Phys. Rev. A 75 062308 [6] Streltsov A, Adesso G, Piani M and Bruß D 2012 Phys. Rev. Lett. 109 050503 [7] Bai Y K, Xu Y F and Wang Z D 2014 Phys. Rev. Lett. 113 100503 [8] Luo Y, Tian T, Shao L H and Li Y 2016 Phys. Rev. A 93 062340 [9] Zhu X N and Fei S M 2014 Phys. Rev. A 90 024304 [10] Jin Z X, Li J, Li T and Fei S M 2018 Phys. Rev. A 97 032336 [11] Kim J S 2010 Phys. Rev. A 81 062328 [12] Guo M L, Li Bo, Wang Z X, et al. 2020 Chin. Phys. B 29 070304 [13] Seevinck M P 2010 Quantum Inf. Process 9 273 [14] Ma X S, Dakic B, Naylor W, Zeilinger A and Walther P 2011 Nat. Phys. 7 399 [15] Verlinde E and Verlinde H 2013 J. High Energy Phys 2013 107 [16] Gour G, Bandyopadhay S and Sanders B C 2007 J. Math. Phys. 48 012108 [17] Buscemi F, Gour G and Kim J S 2009 Phys. Rev. A 80 012324 [18] Kim J S 2018 Phys. Rev. A 97 042332 [19] Kim J S 2012 Phys. Rev. A 85 062302 [20] Kim J S 2016 Phys. Rev. A 94 062338 [21] Kim J S 2018 Phys. Rev. A 97 012334 [22] Yang L M, Chen B, Fei S M and Wang Z X 2019 Commun. Theor. Phys. 71 545 [23] Jin Z X and Fei S M 2019 Quantum Inf. Process 18 21 [24] Jin Z X and Fei S M 2019 Phys. Rev. A 99 032343 [25] Gao L M, Yan F L and Gao T 2020 Quantum Inf. Process 19 276 [26] Kim J S 2016 Ann. Phys. 373 197 [27] Rungta P, Buzek V, Caves C M, Hillery M and Milburn G J 2001 Phys. Rev. A 64, 042315 [28] Albeverio S and Fei S M 2001J. Opt. B: Quantum Semiclass Opt. 3 223 [29] Laustsen T, Verstraete F and Van Enk S J 2003 Quantum Inf. Comput. 3 64 [30] Acin A, Andrianov A, Costa L, Jané E, Latorre J I and Tarrach R 2000 Phys. Rev. Lett. 85 1560 [31] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314 [32] Horodecki M, Horodecki P and Horodecki R 1998 Phys. Rev. Lett. 80 5239 [33] Horodeki P 1997 Phys. Lett. A 232 333 [34] Kim J S 2009 Phys. Rev. A 79 012329 [35] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046 [36] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824 [37] Wootters W K 1998 Phys. Rev. Lett. 80 2245 [38] Tsallis C 1988 J. Stat. Phys. 52 479 [39] Rajagopal A K and Rendell R W 2005 Phys. Rev. A 72 022322 [40] Yuan G M, Song W, Yang M, Li D C, Zhao J L and Cao Z L 2016 Sci. Rep. 6 28719 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|