|
|
Evidence of potential change in nonsequential double ionization |
Changchun Jia(贾昌春)1,†, Pu Zhang(张朴)2, Hua Wen(文华)2, and Zhangjin Chen(陈长进)2,‡ |
1 School of Physics and Material Science, Anhui University, Hefei 230039, China; 2 Department of Physics, College of Science, Shantou University, Shantou 515063, China |
|
|
Abstract Recently, the quantitative rescattering model (QRS) for nonsequential double ionization (NSDI) is modified by taking into account the potential change (PC) due to the presence of electric field at the time of recollision. Using the improved QRS model, we simulate the longitudinal momentum distributions of doubly charged ions He2+ by projecting the correlated two-electron momentum distributions for NSDI of He onto the main diagonal. The obtained results are compared directly with the experimental data at different intensities. It is found that when the PC is considered, the width of momentum distributions reduces and the agreement between theory and experiment is improved.
|
Received: 30 July 2020
Revised: 23 September 2020
Accepted manuscript online: 15 October 2020
|
PACS:
|
34.50.Rk
|
(Laser-modified scattering and reactions)
|
|
34.80.Dp
|
(Atomic excitation and ionization)
|
|
32.80.Fb
|
(Photoionization of atoms and ions)
|
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11274219), the Science and Technology Planning Project of Guangdong Province of China (Grant No. 180917124960522), and the Program for Promotion of Science at Universities in Guangdong Province of China (Grant No. 2018KTSCX062). |
Corresponding Authors:
†Corresponding author. E-mail: jcc@ustc.edu.cn ‡Corresponding author. E-mail: chenzj@stu.edu.cn
|
Cite this article:
Changchun Jia(贾昌春), Pu Zhang(张朴), Hua Wen(文华), and Zhangjin Chen(陈长进) Evidence of potential change in nonsequential double ionization 2021 Chin. Phys. B 30 023401
|
1 Feuerstein B, Moshammer R, Fischer D, Dorn A, Schröter C D, Deipenwisch J, Crespo Lopez-Urrutia J R, Höhr C, Neumayer P, Ullrich J, Rottke H, Trump C, Wittmann M, Korn G and Sandner W 2001 Phys. Rev. Lett. 87 043003 2 Corkum P B 1993 Phys. Rev. Lett. 71 1994 3 Sheehy B, Lafon R, Widmer M, Walker B, DiMauro L F, Agostini P A and Kulander K C 1998 Phys. Rev. A 58 3942 4 Liu Y, Ye D, Liu J, Rudenko A, Tschuch S, D\"urr M, Siege M, Morgner U, Gong Q, Moshammer R and Ullrich J 2010 Phys. Rev. Lett. 104 173002 5 van der Hart H W and Burnett K 2000 Phys. Rev. A 62 013407 6 Chen Z, Zheng Y, Yang W, Song X, Xu J, DiMauro L F, Zatsarinny O, Bartschat K, Morishita T, Zhao S F and Lin C D 2015 Phys. Rev. A 92 063427 7 Chen Z, Li X, Zatsarinny O, Bartschat K and Lin C D 2018 Phys. Rev. A 97 013425 8 Chen Z, Zhang L, Wang Y, Zatsarinny O, Bartschat K, Morishita T and Lin C D 2019 Phys. Rev. A 99 043408 9 Chen Z, Wang Y, Zhang L and Jia X 2019 Phys. Rev. A 99 033401 10 Chen Z, Wang Y, Morishita T, Hao X, Chen J, Zatsarinny O and Bartschat K 2019 Phys. Rev. A 100 023405 11 Staudte A, Ruiz C, Schöffler M, Schössler S, Zeidler D, Weber Th, Meckel M, Villeneuve D M, Corkum P B, Becker A and Dörner R 2007 Phys. Rev. Lett. 99 263002 12 Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J and Kulander K C 1994 Phys. Rev. Lett. 73 1227 13 Weber Th, Weckenbrock M, Staudte A, Spielberger L, Jagutzki O, Mergel V, Afaneh F, Urbasch G, Vollmer M, Giessen H and Dörner R 2000 Phys. Rev. Lett. 84 443 14 de Jesus V L B, Feuerstein B, Zrost K, Fischer D, Rudenko A, Afaneh F, Schr\"oter C D, Moshammer R and Ullrich J 2004 J. Phys. B: Atom. Mol. Opt. Phys. 37 L161 15 Chen Z, Liu F and Wen H 2019 Chin. Phys. B 28 123401 16 Chen Z, Le A T, Morishita T and Lin C D 2009 Phys. Rev. A 79 033409 17 Yudin G L and Ivanov M Y 2001 Phys. Rev. A 64 035401 18 Brauner M, Briggs J S and Klar H 1989 J. Phys. B 22 2265 19 Zatsarinny O and Bartschat K 2013 J. Phys. B 46 112001 20 Liang Y, Chen Z, Madison D H and Lin C D 2011 J. Phys. B 44 085201 21 Morishita T, Chen Z, Watanabe S and Lin C D 2007 Phys. Rev. A 75 023407 22 Chen Z, Morishita T, Le A T and Lin C D 2007 Phys. Rev. A 76 043402 23 Chen Z, Wen H, Liu F, Morishita T, Zatsarinny O and Bartschat K 2020 Opt. Express 28 6490 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|