|
|
A nonlocal Burgers equation in atmospheric dynamical system and its exact solutions |
Xi-Zhong Liu(刘希忠)1, Jun Yu(俞军)1, Zhi-Mei Lou(楼智美)1, Xian-Min Qian(钱贤民)2 |
1 Institute of Nonlinear Science, Shaoxing University, Shaoxing 312000, China;
2 Yuanpei College, Shaoxing University, Shaoxing 312000, China |
|
|
Abstract From a two-vortex interaction model in atmospheric and oceanic systems, a nonlocal counterpart with shifted parity and delayed time reversal is derived by a simple AB reduction. To obtain some approximate analytic solutions of this nonlocal system, the multi-scale expansion method is applied to get an AB-Burgers system. Various exact solutions of the AB-Burgers equation, including elliptic periodic waves, kink waves and solitary waves, are obtained and shown graphically. To show the applications of these solutions in describing correlated events, a simple approximate solution for the two-vortex interaction model is given to show two correlated dipole blocking events at two different places. Furthermore, symmetry reduction solutions of the nonlocal AB-Burgers equation are also given by using the standard Lie symmetry method.
|
Received: 11 September 2018
Revised: 13 October 2018
Accepted manuscript online:
|
PACS:
|
02.30.Jr
|
(Partial differential equations)
|
|
02.30.Ik
|
(Integrable systems)
|
|
05.45.Yv
|
(Solitons)
|
|
47.35.Fg
|
(Solitary waves)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11405110, 11275129, and 11472177) and the Natural Science Foundation of Zhejiang Province of China (Grant No. LY18A050001). |
Corresponding Authors:
Xi-Zhong Liu
E-mail: liuxizhong123@163.com
|
Cite this article:
Xi-Zhong Liu(刘希忠), Jun Yu(俞军), Zhi-Mei Lou(楼智美), Xian-Min Qian(钱贤民) A nonlocal Burgers equation in atmospheric dynamical system and its exact solutions 2019 Chin. Phys. B 28 010201
|
[1] |
Ablowitz M J and Musslimani Z H 2013 Phys. Rev. Lett. 110 064105
|
[2] |
Liu Y K and Li B 2017 Chin. Phys. Lett. 34 010202
|
[3] |
Tang X Y and Liang Z F 2018 Nonlinear Dyn. 92 815
|
[4] |
Ablowitz M J and Musslimani Z H 2014 Phys. Rev. E 90 032912
|
[5] |
Tang X Y, Liang Z F and Hao X Z 2018 Commun. Nonlinear Sci. 60 62
|
[6] |
Ma L Y and Zhu Z N 2016 Appl. Math. Lett. 59 115
|
[7] |
Wang Z, Qin Y P and Zou L 2017 Chin. Phys. B 26 050504
|
[8] |
Ablowitz M J and Musslimani Z H 2017 Stud. Appl. Math. 139 7
|
[9] |
Lou S Y and Huang F 2017 Sci. Rep. 7 869
|
[10] |
Lou S Y 2016 arXiv:1603.03975
|
[11] |
Jia M and Lou S Y 2018 Phys. Lett. A 382 1157
|
[12] |
Lamb H 1945 Hydrodynamics (New York: Dover)
|
[13] |
Lou S Y, Jia M, Huang F and Tang X Y 2007 Internat. J. Theor. Phys. 46 2082
|
[14] |
Jia M, Gao Y, Huang F, Lou S Y, Sun J L and Tang X Y 2012 Nonl. Anal. Real Word Appl. 13 2079
|
[15] |
Butchart N, Haines K and Marshall J C 1989 J. Atmos. Sci. 46 2063
|
[16] |
Tang X Y, Gao Y, Huang F and Lou S Y 2009 Chin. Phys. B 18 4622
|
[17] |
Tang X Y, Zhao J, Huang F and Lou S Y 2009 Stud. Appl. Math. 122 295
|
[18] |
Luo D H and Li J P 2001 Adv. Atmos. Sci. 18 239
|
[19] |
Tang X Y, Huang F and Lou S Y 2006 Chin. Phys. Lett. 23 887
|
[20] |
Qu G Z, Zhang S L, Li H X, Wang G W 2018 Commun. Theor. Phys. 70 399
|
[21] |
Wang G W, Kara A H 2018 Commun. Theor. Phys. 69 5
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|