Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(3): 1033-1039    DOI: 10.1088/1674-1056/18/3/032
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Propagation of Gauss--Bessel beams in turbulent atmosphere

Chen Bao-Suan(陈宝算) and Pu Ji-Xiong(蒲继雄)
Department of Electronic Science and Technology, Huaqiao University, Quanzhou 362021, China
Abstract  This paper studies the propagation properties of Gauss--Bessel beams in a turbulent atmosphere. Based on the extended Huygens--Fresnel principle, it derives the intensity distribution expression for such beams propagating in a turbulent atmosphere. Then the influence of turbulence and source beam parameters on the beam propagation is studied in great detail. It finds that the intensity distribution of Gauss--Bessel beams will change into Gaussian profile in a turbulent atmosphere, and that stronger turbulence and smaller topological charges will lead to a faster changing.
Keywords:  Gauss--Bessel beams      turbulent atmosphere      propagation properties  
Received:  22 May 2008      Revised:  30 August 2008      Accepted manuscript online: 
PACS:  42.68.Bz (Atmospheric turbulence effects)  
  92.60.hk (Convection, turbulence, and diffusion)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by National Natural Science Foundation of China (Grant No 60477041) and Key Project of Science and Technology of Fujian Province of China (Grant No 2007H0027).

Cite this article: 

Chen Bao-Suan(陈宝算) and Pu Ji-Xiong(蒲继雄) Propagation of Gauss--Bessel beams in turbulent atmosphere 2009 Chin. Phys. B 18 1033

[1] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[2] Propagation properties of radially polarized Pearcey-Gauss vortex beams in free space
Xinpeng Chen(陈鑫鹏), Chuangjie Xu(许创杰), Qian Yang(杨芊), Zhiming Luo(罗智明), Xixian Li(李希贤), Dongmei Deng(邓冬梅). Chin. Phys. B, 2020, 29(6): 064202.
[3] Transmission properties of microwave in rectangular waveguide through argon plasma
Xiaoyu Han(韩晓宇), Dawei Li(李大伟), Meie Chen(陈美娥), Zhan Zhang(张展), Zheng Li(李铮), Yujian Li(李雨键), Junhong Wang(王均宏). Chin. Phys. B, 2019, 28(3): 035204.
[4] Quantum polarization fluctuations of partially coherent dark hollow beams in non-Kolmogorov turbulence atmosphere
Xiang Yan(闫香), Peng-Fei Zhang(张鹏飞), Jing-Hui Zhang(张京会), Chun-Hong Qiao(乔春红), Cheng-Yu Fan(范承玉). Chin. Phys. B, 2016, 25(8): 084204.
[5] Effect of turbulent atmosphere on the on-axis average intensity of Pearcey-Gaussian beam
F Boufalah, L Dalil-Essakali, H Nebdi, A Belafhal. Chin. Phys. B, 2016, 25(6): 064208.
[6] Propagation properties of stochastic electromagnetic double-vortex beams in turbulent atmosphere
Fang Gui-Juan (方桂娟), Pu Ji-Xiong (蒲继雄). Chin. Phys. B, 2012, 21(8): 084203.
[7] Double-distance propagation of Gaussian beams passing through a tilted cat-eye optical lens in a turbulent atmosphere
Zhao Yan-Zhong(赵延仲), Sun Hua-Yan(孙华燕), and Song Feng-Hua(宋丰华) . Chin. Phys. B, 2011, 20(4): 044201.
[8] Propagation of cylindrical vector beams in a turbulent atmosphere
Pu Ji-Xiong(蒲继雄), Wang Tao(王涛), Lin Hui-Chuan(林惠川), and Li Cheng-Liang(李成良). Chin. Phys. B, 2010, 19(8): 089201.
[9] Fractional Fourier transform of Lorentz beams
Zhou Guo-Quan(周国泉). Chin. Phys. B, 2009, 18(7): 2779-2784.
No Suggested Reading articles found!