Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 047302    DOI: 10.1088/1674-1056/ab696f
Special Issue: SPECIAL TOPIC —Terahertz physics
SPECIAL TOPIC—Terahertz physics Prev   Next  

Hydrodynamic simulation of chaotic dynamics in InGaAs oscillator in terahertz region

Wei Feng(冯伟)
Department of Physics, Jiangsu University, Zhenjiang 212013, China
Abstract  Hydrodynamic calculations of the chaotic behaviors in n+nn+ In0.53Ga0.47As devices biased in terahertz (THz) electric field have been carried out. Their different transport characteristics have been carefully investigated by tuning the n-region parameters and the applied ac radiation. The oscillatory mode is found to transit between synchronization and chaos, as verified by the first return map. The transitions result from the mixture of the dc induced oscillation and the one driven by the ac radiation. Our findings will give further and thorough understanding of electron transport in In0.53Ga0.47As terahertz oscillator, which is a promising solid-state THz source.
Keywords:  terahertz      chaotic      current oscillation  
Received:  12 December 2019      Revised:  03 January 2020      Accepted manuscript online: 
PACS:  73.61.Ey (III-V semiconductors)  
  73.50.Fq (High-field and nonlinear effects)  
  85.30.Fg (Bulk semiconductor and conductivity oscillation devices (including Hall effect devices, space-charge-limited devices, and Gunn effect devices))  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11604126) and China Scholarship Council (Grant No. 201808695016).
Corresponding Authors:  Wei Feng     E-mail:

Cite this article: 

Wei Feng(冯伟) Hydrodynamic simulation of chaotic dynamics in InGaAs oscillator in terahertz region 2020 Chin. Phys. B 29 047302

[1] Tonouchi M 2007 Nat. Photon. 1 97
[2] Hangyo M 2015 Jpn. J. Appl. Phys. 54 120101
[3] Yang X, Zhao X, Yang K, Liu Y, Liu Y, Fu W and Luo Y 2016 Trends Biotechnol. 34 810
[4] Woolard D L, Brown E R, Pepper M and Kemp M 2005 Proc. IEEE 93 1722
[5] Zhou K, Li H, Wan W J, Li Z P, Liao X Y and Cao J C 2019 Appl. Phys. Lett. 114 191106
[6] Mao X R, Xie S, Zhu C J, Geng Z X and Chen H D 2018 AIP Adv. 8 065323
[7] Kasagi K, Suzuki S and Asada M 2019 J. Appl. Phys. 125 151601
[8] Samoska L A 2011 IEEE Trans. Terahertz Sci. Technol. 1 9
[9] Krömer H 1958 Phys. Rev. 109 1856
[10] Gunn J B 1963 Solid State Commun. 88 883
[11] Karishy S 2015 Lith. J. Phys. 55 305
[12] Feng W 2012 Chin. Phys. Lett. 29 017304
[13] Kitagawa S 2017 Jpn. J. Appl. Phys. 56 058002
[14] Perez S, Gonzlez T, Pardo D and Mateos J 2008 J. Appl. Phys. 103 094516
[15] Khalid A, Pilgrim N J, Dunn G M, Holland M C and Stanley C R 2007 IEEE Electron Device Lett. 28 849
[16] Khald A, Dunn G M, Macpherson R F, et al. 2014 J. Appl. Phys. 115 114502
[17] Choo K Y and Ong D S 2004 J. Appl. Phys. 96 5649
[18] Mookerjea S, Mohata D, Mayer T, Narayanan V and Datta S 2010 IEEE Electron Device Lett. 31 564
[19] Costa J, Peczalski A and Shur M 1989 J. Appl. Phys. 65 5205
[20] Gruzhinskis V, Starikov E and Shiktorov P 1992 Appl. Phys. Lett. 61 1456
[21] Gruzhinskis V, Starikov E, Shiktorov P, Reggiani L and Varani L 1994 Phys. Rev. B 49 13650
[22] Gruzhinskis V, Starikov E and Shiktorov P 1994 J. Appl. Phys. 76 5260
[23] Cao J C and Lei X L 1999 Phys. Rev. B 60 1871
[24] Cao J C and Lei X L 1999 Phys. Rev. B 59 2199
[25] Ziade P, et al. 2010 Semicond. Sci. Technol. 25 075012
[26] Zhang Y H, Kastrup J, Klann R, Ploog K H and Grahn H T 1996 Phys. Rev. Lett. 77 3001
[27] Cao J C, Liu H C and Lei X L 2001 Phys. Rev. B 63 115308
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[3] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[4] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[5] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[6] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[7] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[8] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[9] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[10] Data encryption based on a 9D complex chaotic system with quaternion for smart grid
Fangfang Zhang(张芳芳), Zhe Huang(黄哲), Lei Kou(寇磊), Yang Li(李扬), Maoyong Cao(曹茂永), and Fengying Ma(马凤英). Chin. Phys. B, 2023, 32(1): 010502.
[11] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[12] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[13] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[14] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[15] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
No Suggested Reading articles found!