|
|
A method for calibrating the confocal volume of a confocal three-dimensional micro-x-ray fluorescence setup |
Peng Zhou(周鹏)1,2,3, Xin-Ran Ma(马欣然)4, Shuang Zhang(张爽)1,2,3, Tian-Xi Sun(孙天希)1,2,3, Zhi-Guo Liu(刘志国)1,2,3 |
1 College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China; 2 Applied Optics Beijing Key Laboratory, Department of Physics, Beijing Normal University, Beijing 100875, China; 3 Beijing Radiation Center, Beijing 100875, China; 4 Department of Physics, Beijing Normal University, Beijing 100875, China |
|
|
Abstract The measurement of the confocal volume of a confocal three-dimensional micro-x-ray fluorescence (3D-XRF) setup is a key step in the field of confocal 3D-XRF analysis. With the development of x-ray facilities and optical devices, 3D-XRF analysis with a micro confocal volume will create a great potential for 2D and 3D microstructural analysis and accurate quantitative analysis. However, the classic measurement method of scanning metal foils of a certain thickness leads to inaccuracy. A method for calibrating the confocal volume is proposed in this paper. The new method is based on the basic content of the textbook, and the theoretical results and the feasibility are given in detail for the 3D-XRF mono-chromatic x-ray condition and the poly-chromatic x-ray condition. We obtain a set of experimental confirmation using the poly-chromatic x-ray tube in the laboratory. It is proved that the sensitivity factor of the 3D-XRF can be directly and accurately obtained in a real calibration process.
|
Received: 28 October 2019
Revised: 04 December 2019
Accepted manuscript online:
|
PACS:
|
07.85.Tt
|
(X-ray microscopes)
|
|
07.85.Qe
|
(Synchrotron radiation instrumentation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11675019 and 11875087). |
Corresponding Authors:
Zhi-Guo Liu
E-mail: liuzhiguo512@126.com
|
Cite this article:
Peng Zhou(周鹏), Xin-Ran Ma(马欣然), Shuang Zhang(张爽), Tian-Xi Sun(孙天希), Zhi-Guo Liu(刘志国) A method for calibrating the confocal volume of a confocal three-dimensional micro-x-ray fluorescence setup 2020 Chin. Phys. B 29 020702
|
[1] |
Yi L T, Liu Z G, Wang K, Lin X, Chen M, Peng S, Yang K and Wang J B 2016 Appl. Phys. A 122 329
|
[2] |
Bruyndonckx P, Sasov A and Liu X 2010 AIP Conf. Proc. 1365 61
|
[3] |
Peng S, Liu Z G, Sun T X, Ma Y and Ding X L 2014 Anal. Chem. 86 362
|
[4] |
Kanngießer B, Malzer W and Reiche I 2003 Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 211 259
|
[5] |
Zhou P, Liu Z G, Lin X Y, Liu X, Ye L, Wang X Y, Pan K and Li Y D 2018 Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 423 37
|
[6] |
Gao N and Janssens K 2004 Polycapillary x-ray optics (Chichester: John Wiley & Sons, Ltd) p. 89
|
[7] |
Janssens K, Proost K and Falkenberg G 2004 Spectrochim. Acta-Part. B At. Spectrosc. 59 1637
|
[8] |
Wilke M, Appel K, Vincze L, Schmidt C, Borchert M and Pascarelli S 2010 J. Synchrotron Radiat. 17 669
|
[9] |
Kanngießer B, Mantouvalou I, Malzer W, Wolff T and Hahn O 2008 J. Anal. At. Spectrom. 23 814
|
[10] |
Woll A R, Mass J, Bisulca C, Huang R, Bilderback D H, Gruner S and Gao N 2006 Appl. Phys. A 83 235
|
[11] |
De Samber B, Silversmit G, De Schamphelaere K, Evens R, Schoonjans T, Vekemans B, Janssen C, Masschaele B, Van Hoorebeke L, Szalóki I, Vanhaecke F, Rickers K, Falkenberg G and Vincze L 2010 J. Anal. At. Spectrom. 25 544
|
[12] |
Vincze L, Vekemans B, Brenker F E, Falkenberg G, Rickers K, Somogyi A, Kersten M and Adams F 2004 Anal. Chem. 76 6786
|
[13] |
Smolek S, Pemmer B, Fölser M, Streli C and Wobrauschek P 2012 Rev. Sci. Instrum. 83 083703
|
[14] |
Sun T X, Liu Z G, Li Y D, Lin X Y, Wang G, Zhu G, Xu Q, Luo P, Pan Q L, Liu H and Ding X L 2010 Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 622 295
|
[15] |
Kanngießer B, Malzer W, Rodriguez A F and Reiche I 2005 Acta-Part. B At. Spectrosc. 60 41
|
[16] |
Malzer W and Kanngieer B 2005 Spectrochim. Acta-Part. B At. Spectrosc. 60 1334
|
[17] |
Ebel H 1999 X-Ray Spectrom. 28 255
|
[18] |
Griss J W 1997 NRLXRF, COSMIC Program and Documentation DOD-65, Computer software management and information center, University of Georgia, USA
|
[19] |
Pella P A, Feng L and Small J A 1985 A X-Ray Spectrom. 14 125
|
[20] |
Gilfrich J V and Birks L S 1968 Anal. Chem. 40 1077
|
[21] |
Brown D B, Gilfrich J V and Peckerar M C 1975 J. Appl. Phys. 46 4537
|
[22] |
Planitz-Penno S, Schytte U, Stork G and Fresenius Z 1982 Anal. Chem. 312 600
|
[23] |
Pella P A, Feng L and Small J A 1991 X-Ray Spectrom. 20 109
|
[24] |
Murata M and Shibahara H 1981 X-Ray Spectrom. 10 41
|
[25] |
Tao G Y and Zhuo S J 1998 Acta Chim. Sin. 56 873 (in Chinese)
|
[26] |
Green M and Cosslett V E 1968 J. Phys. D:Appl. Phys. 1 425
|
[27] |
Green M, Cosslett V E, Archard G D and Mulvey T 1964 Proc. Phys. Soc. 83 435
|
[28] |
Pavlinsky G V and Lavrent Y G 1961 Proc. Phy. Soc. 78 1206
|
[29] |
Mantouvalou I, Wolff T, Seim C, Stoytschew V, Malzer W and Kanngießer B 2014 Anal. Chem. 86 9774
|
[30] |
Elam W T, Ravel B D and Sieber J R 2002 Radiat. Phys. Chem. 63 121
|
[31] |
Wolff T, Mantouvalou I, Malzer W, Nissen J, Berger D, Zizak I, Sokaras D, Karydas A, Grlj N, Pelicon P, Schütz R, Žitnik M and Kanngießer B 2009 J. Anal. At. Spectrom. 24 669
|
[32] |
Mantouvalou I, Malzer W and Kanngießer B 2012 Spectrochim. Acta-Part. B At. Spectrosc. 77 9
|
[33] |
Zhou P, Ma X R, Zhang S, Liu Z G, Meng Z Y, Xiang Z J, Wang X Y, Sun T X, Lin X Y and Li Y D 2019 Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 953 163077
|
[34] |
Gao P Y, Lv J, Wang Y C and Ma Y M 2017 Physics 46 582 (in Chinese)
|
[35] |
Zhou P, Ma Y X, Wang X L, Ma H T, Xu X J and Liu Z J 2010 High Laser Part. Beams. 22 973
|
[36] |
Civicioglu P and Besdok E 2013 Artif. Intell. Rev. 39 315
|
[37] |
Wang K, Liu G, Li Y C, Wang J B and Wang G 2019 Powder Technol. 344 598
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|