Special Issue:
TOPICAL REVIEW — A celebration of the 100th birthday of Kun Huang
|
TOPICAL REVIEW—A celebration of the 100th birthday of Kun Huang |
Prev
Next
|
|
|
Unconventional phase transition of phase-change-memory materials for optical data storage |
Nian-Ke Chen(陈念科), Xian-Bin Li(李贤斌) |
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China |
|
|
Abstract Recent years, optically controlled phase-change memory draws intensive attention owing to some advanced applications including integrated all-optical nonvolatile memory, in-memory computing, and neuromorphic computing. The light-induced phase transition is the key for this technology. Traditional understanding on the role of light is the heating effect. Generally, the RESET operation of phase-change memory is believed to be a melt-quenching-amorphization process. However, some recent experimental and theoretical investigations have revealed that ultrafast laser can manipulate the structures of phase-change materials by non-thermal effects and induces unconventional phase transitions including solid-to-solid amorphization and order-to-order phase transitions. Compared with the conventional thermal amorphization, these transitions have potential superiors such as faster speed, better endurance, and low power consumption. This article summarizes some recent progress of experimental observations and theoretical analyses on these unconventional phase transitions. The discussions mainly focus on the physical mechanism at atomic scale to provide guidance to control the phase transitions for optical storage. Outlook on some possible applications of the non-thermal phase transition is also presented to develop new types of devices.
|
Received: 17 July 2019
Revised: 15 August 2019
Accepted manuscript online:
|
PACS:
|
42.79.Vb
|
(Optical storage systems, optical disks)
|
|
64.60.-i
|
(General studies of phase transitions)
|
|
81.30.Hd
|
(Constant-composition solid-solid phase transformations: polymorphic, massive, and order-disorder)
|
|
63.20.dk
|
(First-principles theory)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61922035 and 11904118). |
Corresponding Authors:
Xian-Bin Li
E-mail: lixianbin@jlu.edu.cn
|
Cite this article:
Nian-Ke Chen(陈念科), Xian-Bin Li(李贤斌) Unconventional phase transition of phase-change-memory materials for optical data storage 2019 Chin. Phys. B 28 104202
|
[35] |
Waldecker L, Miller T A, Rude M, Bertoni R, Osmond J, Pruneri V, Simpson R E, Ernstorfer R and Wall S 2015 Nat. Mater. 14 991
|
[1] |
Ovshinsky S 1968 Phys. Rev. Lett. 21 1450
|
[36] |
Mitrofanov K V, Fons P, Makino K, Terashima R, Shimada T, Kolobov A V, Tominaga J, Bragaglia V, Giussani A, Calarco R, Riechert H, Sato T, Katayama T, Ogawa K, Togashi T, Yabashi M, Wall S, Brewe D and Hase M 2016 Sci. Rep. 6 20633
|
[2] |
Breitwisch M J 2009 in Phase Change Materials, eds. S Raoux and M Wuttig (Boston: Springer) p. 381
|
[37] |
Hada M, Oba W, Kuwahara M, Katayama I, Saiki T, Takeda J and Nakamura K G 2015 Sci. Rep. 5 13530
|
[3] |
Sun H J, Hou L S, Wu Y Q and Tang X D 2009 Chin. Phys. Lett. 26 024203
|
[38] |
Fons P, Rodenbach P, Mitrofanov K V, Kolobov A V, Tominaga J, Shayduk R, Giussani A, Calarco R, Hanke M, Riechert H, Simpson R E and Hase M 2014 Phys. Rev. B 90 094305
|
[4] |
Sun H J, Hou L S, Wu Y Q and Zhai F X 2008 Chin. Phys. Lett. 25 2915
|
[39] |
Chen N K, Han D, Li X B, Liu F, Bang J, Wang X P, Chen Q D, Wang H Y, Zhang S and Sun H B 2017 Phys. Chem. Chem. Phys. 19 24735
|
[5] |
Wuttig M and Yamada N 2007 Nat. Mater. 6 824
|
[40] |
Chen N K, Li X B, Wang X P, Xie S Y, Tian W Q, Zhang S and Sun H B 2018 IEEE T. Nanotechnol. 17 140
|
[6] |
Yamada N 2012 Phys. Status Solidi B 249 1837
|
[41] |
Hu J, Vanacore G M, Yang Z, Miao X and Zewail A H 2015 ACS Nano 9 6728
|
[7] |
Ríos C, Stegmaier M, Hosseini P, Wang D, Scherer T, Wright C D, Bhaskaran H and Pernice W H P 2015 Nat. Photon. 9 725
|
[42] |
Matsubara E, Okada S, Ichitsubo T, Kawaguchi T, Hirata A, Guan P F, Tokuda K, Tanimura K, Matsunaga T, Chen M W and Yamada N 2016 Phys. Rev. Lett. 117 135501
|
[8] |
Wright C D, Liu Y, Kohary K I, Aziz M M and Hicken R J 2011 Adv. Mater. 23 3408
|
[43] |
Kolobov A V, Fons P, Tominaga J and Hase M 2014 J. Phys. Chem. C 118 10248
|
[9] |
Feldmann J, Youngblood N, Wright C D, Bhaskaran H and Pernice W H P 2019 Nature 569 208
|
[44] |
Chen N K, Li X B, Bang J, Wang X P, Han D, West D, Zhang S and Sun H B 2018 Phys. Rev. Lett. 120 185701
|
[10] |
Zhang Q, Yu H, Barbiero M, Wang B and Gu M 2019 Light: Sci. Appl. 8 42
|
[45] |
Bang J, Sun Y Y, Liu X Q, Gao F and Zhang S B 2016 Phys. Rev. Lett. 117 126402
|
[11] |
Burr G W 2019 Nature 569 199
|
[46] |
Runge E and Gross E K U 1984 Phys. Rev. Lett. 52 997
|
[12] |
Du K K, Li Q, Lyu Y B, Ding J C, Lu Y, Cheng Z Y and Qiu M 2017 Light: Sci. Appl. 6 e16194
|
[13] |
Qu Y, Li Q, Cai L, Pan M, Ghosh P, Du K and Qiu M 2018 Light: Sci. Appl. 7 26
|
[14] |
Yin X, Steinle T, Huang L, Taubner T, Wuttig M, Zentgraf T and Giessen H 2017 Light: Sci. Appl. 6 e17016
|
[15] |
Chen N K, Li X B, Wang X P, Tian W Q, Zhang S and Sun H B 2018 Acta Mater. 143 102
|
[16] |
Shportko K, Kremers S, Woda M, Lencer D, Robertson J and Wuttig M 2008 Nat. Mater. 7 653
|
[17] |
Chen N K, Li X B, Wang X P, Xia M J, Xie S Y, Wang H Y, Song Z, Zhang S and Sun H B 2015 Acta Mater. 90 88
|
[18] |
Kolobov A V, Fons P, Frenkel A I, Ankudinov A L, Tominaga J and Uruga T 2004 Nat. Mater. 3 703
|
[19] |
Li X B, Chen N K, Wang X P and Sun H B 2018 Adv. Funct. Mater. 28 1803380
|
[20] |
Akola J and Jones R O 2007 Phys. Rev. B 76 235201
|
[21] |
Hegedus J and Elliott S R 2008 Nat. Mater. 7 399
|
[22] |
Noé P, Vallée C, Hippert F, Fillot F and Raty J Y 2018 Semicond. Sci. Technol. 33 013002
|
[23] |
Zhu M, Xia M, Rao F, Li X, Wu L, Ji X, Lv S, Song Z, Feng S, Sun H and Zhang S 2014 Nat. Commun. 5 4086
|
[24] |
Lin J C, Long G Y, Wang Y and Wu Y Q 2013 Chin. Phys. B 22 124208
|
[25] |
Li X B, Liu X Q, Han X D and Zhang S B 2012 Phys. Status Solidi B 249 1861
|
[26] |
Li X B, Liu X Q, Liu X, Han D, Zhang Z, Han X D, Sun H B and Zhang S B 2011 Phys. Rev. Lett. 107 015501
|
[27] |
Sokolowski-Tinten K, Bialkowski J and von der Linde D 1995 Phys. Rev. B 51 14186
|
[28] |
Stampfli P and Bennemann K H 1990 Phys. Rev. B 42 7163
|
[29] |
Konishi M, Santo H, Hongo Y, Tajima K, Hosoi M and Saiki T 2010 Appl. Opt. 49 3470
|
[30] |
Siegel J, Gawelda W, Puerto D, Dorronsoro C, Solis J, Afonso C N, de Sande J C G, Bez R, Pirovano A and Wiemer C 2008 J. Appl. Phys. 103 023516
|
[31] |
Kieu K, Narumi K and Mansuripur M 2006 Appl. Opt. 45 7826
|
[32] |
Sun H B, Wang L and Wang H Y 2015 Physics 44 349 (in Chinese)
|
[33] |
Fons P, Osawa H, Kolobov A V, Fukaya T, Suzuki M, Uruga T, Kawamura N, Tanida H and Tominaga J 2010 Phys. Rev. B 82 041203
|
[34] |
Kolobov A V, Krbal M, Fons P, Tominaga J and Uruga T 2011 Nat. Chem. 3 311
|
[35] |
Waldecker L, Miller T A, Rude M, Bertoni R, Osmond J, Pruneri V, Simpson R E, Ernstorfer R and Wall S 2015 Nat. Mater. 14 991
|
[36] |
Mitrofanov K V, Fons P, Makino K, Terashima R, Shimada T, Kolobov A V, Tominaga J, Bragaglia V, Giussani A, Calarco R, Riechert H, Sato T, Katayama T, Ogawa K, Togashi T, Yabashi M, Wall S, Brewe D and Hase M 2016 Sci. Rep. 6 20633
|
[37] |
Hada M, Oba W, Kuwahara M, Katayama I, Saiki T, Takeda J and Nakamura K G 2015 Sci. Rep. 5 13530
|
[38] |
Fons P, Rodenbach P, Mitrofanov K V, Kolobov A V, Tominaga J, Shayduk R, Giussani A, Calarco R, Hanke M, Riechert H, Simpson R E and Hase M 2014 Phys. Rev. B 90 094305
|
[39] |
Chen N K, Han D, Li X B, Liu F, Bang J, Wang X P, Chen Q D, Wang H Y, Zhang S and Sun H B 2017 Phys. Chem. Chem. Phys. 19 24735
|
[40] |
Chen N K, Li X B, Wang X P, Xie S Y, Tian W Q, Zhang S and Sun H B 2018 IEEE T. Nanotechnol. 17 140
|
[41] |
Hu J, Vanacore G M, Yang Z, Miao X and Zewail A H 2015 ACS Nano 9 6728
|
[42] |
Matsubara E, Okada S, Ichitsubo T, Kawaguchi T, Hirata A, Guan P F, Tokuda K, Tanimura K, Matsunaga T, Chen M W and Yamada N 2016 Phys. Rev. Lett. 117 135501
|
[43] |
Kolobov A V, Fons P, Tominaga J and Hase M 2014 J. Phys. Chem. C 118 10248
|
[44] |
Chen N K, Li X B, Bang J, Wang X P, Han D, West D, Zhang S and Sun H B 2018 Phys. Rev. Lett. 120 185701
|
[45] |
Bang J, Sun Y Y, Liu X Q, Gao F and Zhang S B 2016 Phys. Rev. Lett. 117 126402
|
[46] |
Runge E and Gross E K U 1984 Phys. Rev. Lett. 52 997
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|