ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Confinement of Bloch surface waves in a graphene-based one-dimensional photonic crystal and sensing applications |
Xiu-Juan Zou(邹秀娟)1,2, Gai-Ge Zheng(郑改革)1,2,3, Yun-Yun Chen(陈云云)1,2,3 |
1 Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing University of Information Science & Technology, Nanjing 210044, China; 2 School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; 3 Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology(CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044, China |
|
|
Abstract Bloch surface waves (BSWs) are excited in one-dimensional photonic crystals (PhCs) terminated by a graphene monolayer under the Kretschmann configuration. The field distribution and reflectance spectra are numerically calculated by the transverse magnetic method under transfer-matrix polarization, while the sensitivity is analyzed and compared with those of the surface plasmon resonance sensing method. It is found that the intensity of magnetic field is considerably enhanced in the region of the terminated layer of the multilayer stacks, and that BSW resonance appears only in the interface of the graphene and solution. Influences of the graphene layers and the thickness of a unit cell in PhCs on the reflectance are studied as well. In particular, by analyzing the performance of BSW sensors with the graphene monolayer, the wavelength sensitivity of the proposed sensor is 1040 nm/RIU whereas the angular sensitivity is 25.1°/RIU. In addition, the maximum of figure of merit can reach as high as 3000 RIU-1. Thus, by integrating graphene in a simple Kretschmann structure, one can obtain an enhancement of the light-graphene interaction, which is prospective for creating label-free, low-cost and high-sensitivity optical biosensors.
|
Received: 01 December 2017
Revised: 10 January 2018
Accepted manuscript online:
|
PACS:
|
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.61203211 and 41675154),the Six Major Talent Peak Expert of Jiangsu Province,China (Grant No.2015-XXRJ-014),and the Natural Science Foundation of Jiangsu Province,China (Grant No.BK20141483). |
Corresponding Authors:
Gai-Ge Zheng
E-mail: jsnanophotonics@yahoo.com
|
Cite this article:
Xiu-Juan Zou(邹秀娟), Gai-Ge Zheng(郑改革), Yun-Yun Chen(陈云云) Confinement of Bloch surface waves in a graphene-based one-dimensional photonic crystal and sensing applications 2018 Chin. Phys. B 27 054102
|
[13] |
Liscidini M and Sipe J E 2009 J. Opt. Soc. Am. B 26 279
|
[1] |
Wang T B, Liu N H, Yu T B, Deng X H, Xu X M and Liao Q H 2014 Chin. Phys. B 23 044101
|
[14] |
Kang X B, Liu L J, Lu H, Li H D and Wang Z G 2016 J. Opt. Soc. Am. A 33 997
|
[2] |
Yu L B, Barakat E, Francesco J D and Herzig H P 2015 Opt. Express 23 31640
|
[15] |
Occhicone A, Sinibaldi A, Sonntag F, Munzert P, Danz N and Michelotti F 2017 Sens. Act. B 247 532
|
[3] |
Konopsky V N, Karakouz T, Alieva E V, Chiara V, Sekatskii S K and Giovanni D 2013 Sensors 13 2566
|
[16] |
Sinibaldi A, Danz N, Descrovi E, Munzert P, Schulz U, Sonntag F, Dominici L and Michelotti F 2012 Sens. Act. B 174 292
|
[4] |
Meng Q Q, Zhao X, Chen S J, Lin C Y, Ding Y C and Chen Z Y 2017 Chin. Phys. B 26 124213
|
[17] |
Sinibaldi A, Fieramosca A, Rizzo R, Anopchenko A, Danz N, Munzert P, Magistris C, Barolo C and Michelotti F 2014 Opt. Lett. 39 2947
|
[5] |
Liu Y C, Chen H L, Li S G, Liu Q and Li J S 2017 Chin. Phys. B 26 104211
|
[18] |
Qiao H, Guan B, Gooding J J and Reece P J 2010 Opt. Express 18 15174
|
[6] |
Weng S J, Pei L, Wang J S, Ning T G and Li J 2016 Chin. Opt. Lett. 14 110603
|
[19] |
Rivolo P, Michelotti F, Frascella F, Digregorio G, Mandracci P, Dominici L, Giorgis F and Descrovi F E 2012 Sens. Act. B 161 1046
|
[7] |
Lan G Q, Liu S G, Zhang X R, Wang Y X and Song Y L 2016 Chin. Opt. Lett. 14 022401
|
[20] |
Li Y, Yang T, Song S, Pang Z, Du G and Han S 2013 Appl. Phys. Lett. 103 04116
|
[8] |
Dubey R, Lahijani B V, Häyrinen M, Roussey M, Kuittinen M and Herzig H P 2017 Photon. Res. 5 494
|
[21] |
Varghese S, Lonkar S, Singh K, Swaminathan S and Abdala A 2015 Sens. Act. B 218 160
|
[9] |
Michelotti F, Rizzo R, Sinibaldi A, Munzert P, Wächter C and Danz N 2017 Opt. Lett. 42 2798.
|
[22] |
Kulkarni G S, Reddy K, Zhong Z H and Fan X D 2014 Nat. Commun. 5 4376
|
[10] |
Guo Y, Yan L, Pan W, Luo B and Luo X 2014 Plasmonics 9 951
|
[23] |
Ye Z B, Tai H L, Guo R, Yuan Z, Liu C H, Su Y J, Chen Z and Jiang Y D 2017 Appl. Surf. Sci. 419 84
|
[11] |
Tu T Y, Pang F F, Zhu S, Cheng J J, Liu H H, Wen J X and Wang T Y 2017 Opt. Express 25 9019
|
[24] |
Pu M, Chen P, Wang Y, Zhao Z, Wang C, Huang C, Hu C and Luo X 2013 Opt. Express 21 11618
|
[12] |
Dubey R, Lahijani B V, Barakat E, Häyrinen M, Roussey M, Kuittinen M and Herzig H P 2016 Opt. Lett. 41 4867
|
[25] |
Li S, Luo J, Anwar S, Li S, Lu W, Hang Z, Lai Y, Hou B, Shen M and Wang C 2015 Phys. Rev. B 91 220301
|
[13] |
Liscidini M and Sipe J E 2009 J. Opt. Soc. Am. B 26 279
|
[26] |
Grigorenko A N, Polini M and Novoselov K S 2012 Nat. Photon. 6 749
|
[14] |
Kang X B, Liu L J, Lu H, Li H D and Wang Z G 2016 J. Opt. Soc. Am. A 33 997
|
[27] |
Koppens F H, Chang D E and García de Abajo F J 2011 Nano Lett. 11 3370
|
[15] |
Occhicone A, Sinibaldi A, Sonntag F, Munzert P, Danz N and Michelotti F 2017 Sens. Act. B 247 532
|
[28] |
Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R and Wang F 2011 Nat. Nanotechnol. 6 630
|
[16] |
Sinibaldi A, Danz N, Descrovi E, Munzert P, Schulz U, Sonntag F, Dominici L and Michelotti F 2012 Sens. Act. B 174 292
|
[29] |
Low T and Avouris P 2014 ACS Nano 8 1086
|
[17] |
Sinibaldi A, Fieramosca A, Rizzo R, Anopchenko A, Danz N, Munzert P, Magistris C, Barolo C and Michelotti F 2014 Opt. Lett. 39 2947
|
[30] |
Schedin F, Lidorikis E, Lombardo A, Kravets V G, Geim A K, Grigorenko A N, Novoselov K S and Ferrari A C 2010 ACS Nano 4 5617
|
[18] |
Qiao H, Guan B, Gooding J J and Reece P J 2010 Opt. Express 18 15174
|
[31] |
Bruna M and Borini S 2009 Appl. Phys. Lett. 94 031901
|
[19] |
Rivolo P, Michelotti F, Frascella F, Digregorio G, Mandracci P, Dominici L, Giorgis F and Descrovi F E 2012 Sens. Act. B 161 1046
|
[32] |
Liu J T, Liu N H, Li J, Li X J and Huang J H 2012 Appl. Phys. Lett. 101 052104
|
[20] |
Li Y, Yang T, Song S, Pang Z, Du G and Han S 2013 Appl. Phys. Lett. 103 04116
|
[33] |
Merzlikin A M and Baryshev A V 2014 Appl. Opt. 53 3142
|
[21] |
Varghese S, Lonkar S, Singh K, Swaminathan S and Abdala A 2015 Sens. Act. B 218 160
|
[34] |
Yu D L, Du C Y, Shen H J, Liu J W and Wen J H 2017 Chin. Phys. Lett. 34 076202
|
[22] |
Kulkarni G S, Reddy K, Zhong Z H and Fan X D 2014 Nat. Commun. 5 4376
|
[35] |
Yin G, Yuan J, Jiang W, Zhu J F and Ma Y G 2016 Chin. Phys. B 25 114216
|
[23] |
Ye Z B, Tai H L, Guo R, Yuan Z, Liu C H, Su Y J, Chen Z and Jiang Y D 2017 Appl. Surf. Sci. 419 84
|
[36] |
Zhan T, Shi X, Dai Y, Liu X and Zi J 2013 J. Phys.:Condens. Matter 25 215301
|
[24] |
Pu M, Chen P, Wang Y, Zhao Z, Wang C, Huang C, Hu C and Luo X 2013 Opt. Express 21 11618
|
[37] |
Deng X H, Liu J T and Yuan J R 2015 Europhys. Lett. 109 27002
|
[25] |
Li S, Luo J, Anwar S, Li S, Lu W, Hang Z, Lai Y, Hou B, Shen M and Wang C 2015 Phys. Rev. B 91 220301
|
[38] |
Li X F, Peng W, Zhao Y L, Wang Q and Wei J L 2016 Chin. Phys. B 25 037303
|
[26] |
Grigorenko A N, Polini M and Novoselov K S 2012 Nat. Photon. 6 749
|
[39] |
Pirotta S, Xu X J, Delfan A, Mysore S, Maiti S, Dacarro G, Patrini M, Galli M and Guizzetti G 2013 J. Phys. Chem. C 117 6821
|
[27] |
Koppens F H, Chang D E and García de Abajo F J 2011 Nano Lett. 11 3370
|
[28] |
Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R and Wang F 2011 Nat. Nanotechnol. 6 630
|
[40] |
Sreekanth K V, Zeng S, Shang J, Yong K T and Yu T 2012 Sci. Rep. 2 737
|
[29] |
Low T and Avouris P 2014 ACS Nano 8 1086
|
[41] |
Baghbadorani H K, Barvestani J and Entezar S R 2017 Appl. Opt. 56 462
|
[30] |
Schedin F, Lidorikis E, Lombardo A, Kravets V G, Geim A K, Grigorenko A N, Novoselov K S and Ferrari A C 2010 ACS Nano 4 5617
|
[31] |
Bruna M and Borini S 2009 Appl. Phys. Lett. 94 031901
|
[32] |
Liu J T, Liu N H, Li J, Li X J and Huang J H 2012 Appl. Phys. Lett. 101 052104
|
[33] |
Merzlikin A M and Baryshev A V 2014 Appl. Opt. 53 3142
|
[34] |
Yu D L, Du C Y, Shen H J, Liu J W and Wen J H 2017 Chin. Phys. Lett. 34 076202
|
[35] |
Yin G, Yuan J, Jiang W, Zhu J F and Ma Y G 2016 Chin. Phys. B 25 114216
|
[36] |
Zhan T, Shi X, Dai Y, Liu X and Zi J 2013 J. Phys.:Condens. Matter 25 215301
|
[37] |
Deng X H, Liu J T and Yuan J R 2015 Europhys. Lett. 109 27002
|
[38] |
Li X F, Peng W, Zhao Y L, Wang Q and Wei J L 2016 Chin. Phys. B 25 037303
|
[39] |
Pirotta S, Xu X J, Delfan A, Mysore S, Maiti S, Dacarro G, Patrini M, Galli M and Guizzetti G 2013 J. Phys. Chem. C 117 6821
|
[40] |
Sreekanth K V, Zeng S, Shang J, Yong K T and Yu T 2012 Sci. Rep. 2 737
|
[41] |
Baghbadorani H K, Barvestani J and Entezar S R 2017 Appl. Opt. 56 462
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|