Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 088701    DOI: 10.1088/1674-1056/26/8/088701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Bloom's syndrome protein unfolding G-quadruplexes in two pathways

Zhen-Ye Zhao(赵振业)1,2, Chun-Hua Xu(徐春华)1,2, Jing Shi(史婧)3, Jing-Hua Li(李菁华)4, Jian-Bing Ma(马建兵)1,2, Qi Jia(贾棋)1,2, Dong-Fei Ma(马东飞)1,2, Ming Li(李明)1,2, Ying Lu(陆颖)1,2
1 Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3 College of Life Science, Northwest A & F University, Xianyang 712100, China;
4 Material and Energy School, Guangdong University of Technology, Guangzhou 510006, China
Abstract  

The Bloom helicase (BLM) gene product encodes a DNA helicase that functions in homologous recombination repair to prevent genomic instability. BLM is highly active in binding and unfolding G-quadruplexes (G4), which are non-canonical DNA structures formed by Hoogsteen base-pairing in guanine-rich sequences. Here we use single-molecule fluorescence resonance energy transfer (smFRET) to study the molecular mechanism of BLM-catalysed G4 unfolding and show that BLM unfolds G4 in two pathways. Our data enable us to propose a model in which the HRDC domain functions as a regulator of BLM, depending on the position of the HRDC domain of BLM in action: when HRDC binds to the G4 sequence, BLM may hold G4 in the unfolded state; otherwise, it may remain on the unfolded G4 transiently so that G4 can refold immediately.

Keywords:  G-quadruplexes      BLM      helicase      smFRET  
Received:  24 March 2017      Revised:  12 April 2017      Accepted manuscript online: 
PACS:  87.14.G- (Nucleic acids)  
  87.15.H- (Dynamics of biomolecules)  
  87.15.kj (Protein-polynucleotide interactions)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11674382, 11574381, and 11574382) and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SYS014).

Corresponding Authors:  Ying Lu     E-mail:  yinglu@iphy.ac.cn
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Zhen-Ye Zhao(赵振业), Chun-Hua Xu(徐春华), Jing Shi(史婧), Jing-Hua Li(李菁华), Jian-Bing Ma(马建兵), Qi Jia(贾棋), Dong-Fei Ma(马东飞), Ming Li(李明), Ying Lu(陆颖) Bloom's syndrome protein unfolding G-quadruplexes in two pathways 2017 Chin. Phys. B 26 088701

[1] German J 1993 Medicine 72 393
[2] Karow J K, Chakraverty R K and Hickson I D 1997 J. Biol. Chem. 272 30611
[3] Yodh J G, Stevens B C, Kanagaraj R, Janscak P and Ha T 2009 EMBO J. 28 405
[4] Cheok C F, Bachrati C Z, Chan K L, Ralf C, Wu L and Hickson I D 2005 Biochem. Soc. Trans. 33 1456
[5] Xi X G 2010 Methods in molecular biology (Clifton, N.J.) 587 173
[6] German J, Sanz M A, Ciocci S, Ye T Z and Ellis N A 2007 Hum. Mutat. 28 743
[7] Ellis N A, Groden J, Ye T Z, Straughen J, Lennon D J, Ciocci S, Proytcheva M and German J 1995 Cell 83 655
[8] Budhathoki J B, Ray S, Urban V, Janscak P, Yodh J G and Balci H 2014 Nucleic Acids Res. 42 11528
[9] Budhathoki J B, Stafford E J, Yodh J G and Balci H 2015 Nucleic Acids Res. 43 5961
[10] Wu W Q, Hou X M, Li M, Dou S X and Xi X G 2015 Nucleic Acids Res. 43 4614
[11] Liu J Q, Chen C Y, Xue Y, Hao Y H and Tan Z 2010 J. Am. Chem. Soc. 132 10521
[12] Sun H, Karow J K, Hickson I D and Maizels N 1998 J. Biol. Chem. 273 27587
[13] Rezazadeh S 2013 Mol. Biol. Rep. 40 3049
[14] Sato A, Mishima M, Nagai A, Kim S Y, Ito Y, Hakoshima T, Jee J G and Kitano K 2010 J. Biochem. 148 517
[15] Kocsis Z S, Sarlos K, Harami G M, Martina M and Kovacs M 2014 J. Biol. Chem. 289 5938
[16] Cheok C F, Wu L, Garcia P L, Janscak P and Hickson I D 2005 Nucleic Acids Res. 33 3932
[17] Wu L, Chan K L, Ralf C, Bernstein D A, Garcia P L, Bohr V A, Vindigni A, Janscak P, Keck J L and Hickson I D 2005 EMBO J. 24 2679
[18] Gyimesi M, Harami G M, Sarlos K, Hazai E, Bikadi Z and Kovacs M 2012 Nucleic Acids Res. 40 3952
[19] Huber M D, Duquette M L, Shiels J C and Maizels N 2006 J. Mol. Biol. 358 1071
[20] Chatterjee S, Zagelbaum J, Savitsky P, Sturzenegger A, Huttner D, Janscak P, Hickson I D, Gileadi O and Rothenberg E 2014 Nat. Commun. 5 5556
[21] Bernstein D A and Keck J L 2005 Structure 13 1173
[22] Killoran M P and Keck J L 2008 Nucleic Acids Res. 36 3139
[23] Newman J A, Savitsky P, Allerston C K, Bizard A H, Ozer O, Sarlos K, Liu Y, Pardon E, Steyaert J, Hickson I D and Gileadi O 2015 Nucleic Acids Res. 43 5221
[24] Gellert M, Lipsett M N and Davies D R 1962 Proc. Natl. Acad. Sci. USA 48 2013
[25] Sen D and Gilbert W 1988 Nature 334 364
[26] Tippana R, Hwang H, Opresko P L, Bohr V A and Myong S 2016 Proc. Natl. Acad. Sci. USA 113 8448
[27] Lillard-Wetherell K, Machwe A, Langland G T, Combs K A, Behbehani G K, Schonberg S A, German J, Turchi J J, Orren D K and Groden J 2004 Hum. Mol. Genet. 13 1919
[28] Selak N, Bachrati C Z, Shevelev I, Dietschy T, van Loon B, Jacob A, Hubscher U, Hoheisel J D, Hickson I D and Stagljar I 2008 Nucleic Acids Res. 36 5166
[1] New insight into the mechanism of DNA polymerase I revealed by single-molecule FRET studies of Klenow fragment
Rokshana Parvin, Qi Jia(贾棋), Jianbing Ma(马建兵), Chunhua Xu(徐春华), Ying Lu(陆颖), Fangfu Ye(叶方富), and Ming Li(李明). Chin. Phys. B, 2022, 31(8): 088701.
[2] Interaction between human telomeric G-quadruplexes characterized by single molecule magnetic tweezers
Yi-Zhou Wang(王一舟), Xi-Miao Hou(侯锡苗), Hai-Peng Ju(车海鹏), Xue Xiao(肖雪), Xu-Guang Xi(奚绪光), Shuo-Xing Dou(窦硕星), Peng-Ye Wang(王鹏业), Wei Li(李伟). Chin. Phys. B, 2018, 27(6): 068701.
[3] Helicase activity and substrate specificity of RecQ5β
Jing You(尤菁), Ya-Nan Xu(徐雅楠), Hui Li(李辉), Xi-Ming Lu(吕袭明), Wei Li(李伟), Peng-Ye Wang(王鹏业), Shuo-Xing Dou(窦硕星), Xu-Guang Xi(奚绪光). Chin. Phys. B, 2017, 26(6): 068701.
No Suggested Reading articles found!