Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 050503    DOI: 10.1088/1674-1056/26/5/050503
GENERAL Prev   Next  

New results for exponential synchronization of linearly coupled ordinary differential systems

Ping Tong(童评), Shi-Hua Chen(陈士华)
School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
Abstract  

This paper investigates the exponential synchronization of linearly coupled ordinary differential systems. The intrinsic nonlinear dynamics may not satisfy the QUAD condition or weak-QUAD condition. First, it gives a new method to analyze the exponential synchronization of the systems. Second, two theorems and their corollaries are proposed for the local or global exponential synchronization of the coupled systems. Finally, an application to the linearly coupled Hopfield neural networks and several simulations are provided for verifying the effectiveness of the theoretical results.

Keywords:  exponential synchronization      linearly coupled      ordinary differential systems      QUAD condition  
Received:  14 November 2016      Revised:  03 February 2017      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61273215).

Corresponding Authors:  Shi-Hua Chen     E-mail:  shcheng@whu.edu.cn

Cite this article: 

Ping Tong(童评), Shi-Hua Chen(陈士华) New results for exponential synchronization of linearly coupled ordinary differential systems 2017 Chin. Phys. B 26 050503

[1] Dhamala M, Jirsa V K and Ding M 2004 Phys. Rev. Lett 92 537
[2] Lakshmanan S, Ju H P, Rihan F A and Rakkiyappan R 2014 Chin. Phys. B 23 218
[3] Prakash M, Balasubramaniam P and Lakshmanan S 2016 Neural Networks 83 86
[4] Shi X and Zhang J D 2016 Chin. Phys. B 25 060502
[5] Bignami F and Agliari A 2010 Stud. Nonlinear Dyn. Econ. 14 1
[6] Mcnally J C, Crowe M A, Roche J F and Beltman M E 2014 Theriogenology 82 1263
[7] Wu D Y, Zhao Y P, Zheng M H, Zhou J and Liu Z H 2016 Chin. Phys. B 25 028701
[8] Xu D G, Xu X Y, Yang C H and Gui W H 2017 Physica A 466 544
[9] Yang J S, Strukov D B and Stewart D R 2013 Nat. Nanotechnol. 8 13
[10] Pham V T, Buscarino A, Fortuna L and Frasca M 2012 Int. J. Bifur. Chaos 22 2543
[11] Perez-Manuzuri V, Perez-Villar V and Chua L O 1993 IEEE Trans. Circuits Syst. I 40 174
[12] Vanwiggeeren G D and Roy P 1988 Science 279 1198
[13] Lu W L and Chen T P 2004 IEEE Trans. Circuits Syst. I 51 2491
[14] Hoppensteadt F C and Lzhikevich E M 2000 IEEE Trans. Neural Netw. 11 734
[15] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[16] Tang L K, Lu J A and Chen G R 2012 Chaos 22 023121
[17] Tang L K, Lu J A and Wu X Q 2014 Int. J. Bifur. Chaos 24 1450011
[18] Wu C W and Chua L O 1995 IEEE Trans. Circuits Syst. I 42 430
[19] Yu W W, Chen G R, Lv J H and Kurths J 2013 SIAM J. Optimiz. 52 1395
[20] Lu W L and Chen T P 2006 Phys. D 213 214
[21] Liu X W and Chen T P 2008 Phys. D 237 630
[22] Liu B, Lu W L and Chen T P 2012 Neural Networks 25 5
[23] Yang X and Cao J 2013 IEEE Trans. Circuits Syst. I 60 2431
[24] Xu Y, Lu R Q, Shi P, Li H Y and Xie S L 2016 IEEE Trans. Cybern. 60 2635122
[25] Xu Y, Lu R Q, Shi P, Li H Y and Xie S L 2016 IEEE Trans. Neural Netw. Learn. Syst. 60 2636325
[26] Yang K L 2016 Acta Phys. Sin. 65 100501 (in Chinese)
[27] Zhu L H 2016 Chin. Phys. Lett. 33 50501
[28] Horn R A and Johnson C R 2001 Martix Analysis (New York: Springer)
[29] Bhaya A, Kaszkurewicz E and Santos R 2003 Linear Algebra Appl. 374 159
[1] Impulsive effect on exponential synchronization of neural networks with leakage delay under sampled-data feedback control
S. Lakshmanan, Ju H. Park, Fathalla A. Rihan, R. Rakkiyappan. Chin. Phys. B, 2014, 23(7): 070205.
[2] Exponential synchronization of chaotic Lur'e systems with time-varying delay via sampled-data control
R. Rakkiyappan, R. Sivasamy, S. Lakshmanan. Chin. Phys. B, 2014, 23(6): 060504.
[3] Exponential synchronization of complex dynamical networks with Markovian jumping parameters using sampled-data and mode-dependent probabilistic time-varying delays
R. Rakkiyappan, N. Sakthivel, S. Lakshmanan. Chin. Phys. B, 2014, 23(2): 020205.
[4] Cluster exponential synchronization of a class of complex networks with hybrid coupling and time-varying delay
Wang Jun-Yi (王军义), Zhang Hua-Guang (张化光), Wang Zhan-Shan (王占山), Liang Hong-Jing (梁洪晶). Chin. Phys. B, 2013, 22(9): 090504.
[5] Novel criteria for exponential synchronization of inner time-varying complex networks with coupling delay
Zhang Qun-Jiao(张群娇) and Zhao Jun-Chan(赵军产) . Chin. Phys. B, 2012, 21(4): 040502.
[6] Global exponential synchronization between Lü system and Chen system with unknown parameters and channel time-delay
Ma Tie-Dong (马铁东), Fu Jie (浮洁). Chin. Phys. B, 2011, 20(5): 050511.
[7] Pinning impulsive synchronization of stochastic delayed coupled networks
Tang Yang(唐漾), Wong W K(黃偉強), Fang Jian-An(方建安), and Miao Qing-Ying(苗清影) . Chin. Phys. B, 2011, 20(4): 040513.
[8] Global impulsive exponential synchronization of stochastic perturbed chaotic delayed neural networks
Zhang Hua-Guang(张化光), Ma Tie-Dong(马铁东), Fu Jie(浮洁), and Tong Shao-Cheng(佟绍成). Chin. Phys. B, 2009, 18(9): 3742-3750.
[9] Exponential synchronization of stochastic impulsive perturbed chaotic Lur'e systems with time-varying delay and parametric uncertainty
Ma Tie-Dong (马铁东), Zhang Hua-Guang (张化光), Fu Jie (浮洁). Chin. Phys. B, 2008, 17(12): 4407-4417.
[10] Linear matrix inequality approach to exponential synchronization of a class of chaotic neural networks with time-varying delays
Wu Wei(吴炜) and Cui Bao-Tong (崔宝同). Chin. Phys. B, 2007, 16(7): 1889-1896.
No Suggested Reading articles found!