Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 070501    DOI: 10.1088/1674-1056/24/7/070501
GENERAL Prev   Next  

Rotational stretched exponential relaxation in random trap-barrier model

Ekrem Aydıner
Department of Physics, Faculty of Science, Istanbul University, Vezneciler, Istanbul, 34134, Turkey
Abstract  

The relaxation behavior of complex-disordered systems, such as spin glasses, polymers, colloidal suspensions, structural glasses,and granular media, has not been clarified. Theoretical studies show that relaxation in these systems has a topological origin. In this paper, we focus on the rotational stretched exponential relaxation behavior in complex-disordered systems and introduce a simple phase space model to understand the mechanism of the non-exponential relaxation of these systems. By employing the Monte Carlo simulation method to the model, we obtain the rotational relaxation function as a function of temperature. We show that the relaxation function has a stretched exponential form under the critical temperature while it obeys the Debye law above the critical temperature.

Keywords:  random walks      rotational relaxation      slow dynamics      Kohlrausch-William-Watts (KWW) relaxation  
Received:  18 November 2014      Accepted manuscript online: 
PACS:  05.40.Fb (Random walks and Levy flights)  
  45.20.dc (Rotational dynamics)  
Fund: 

Project supported by Istanbul University (Grant Nos. 28432 and 45662).

Corresponding Authors:  Ekrem Aydıner     E-mail:  ekrem.aydiner@istanbul.edu.tr

Cite this article: 

Ekrem Aydıner Rotational stretched exponential relaxation in random trap-barrier model 2015 Chin. Phys. B 24 070501

[1] Debye P 1929 Polar Molecules (New York: Dover)
[2] Kohlrausch R 1847 Ann. Phys. 12 393
[3] Williams G and Watts D C 1970 Trans. Faraday Soc. 66 80
[4] Micoulaut M 2013 Physics 6 72
[5] EdigerMD, Angell C A and Nagel S R 1996 J. Phys. Chem. 100 13200
[6] Angell C A 1995 Science 267 1924
[7] Welch R C 2013 Phys. Rev. Lett. 110 265901
[8] Binder K and Young A P 1986 Rev. Mod. Phys. 58 801
[9] Jack D R L and Garrahan J P 2010 Phys. Rev. E 81 011111
[10] Yin H and Chakraborty B 2002 Phys. Rev. E 65 036119
[11] Pusey P N and van Megen W 1986 Nature 320 340
[12] Liu A J and Nagel S 1998 Nature 396 21
[13] Phillips J C 1996 Rep. Prog. Phys. 59 1133
[14] McKenna G B 2008 Nat. Phys. 4 673
[15] Ogielski A T 1985 Phys. Rev. B 32 7384
[16] de Dominicis C, Orland H and Lainée F 1985 J. de Physique Lett. 46 463
[17] Donsker M D and Varadhan S R S 1979 Commun. Pure Appl. Math. 32 721
[18] Rasaiah J C, Zhu J, Hubbard J B and Rubin R J 1990 J. Chem. Phys. 93 5768
[19] Scher H and Lax M 1973 Phys. Rev. B 7 4491
[20] Grassberger P and Procaccia I 1982 J. Chem. Phys. 77 6281
[21] Phillips J C 1994 J. Stat. Phys. 77 945
[22] Palmer R G, Stein D L, Abrahams E and Anderson P W 1984 Phys. Rev. Lett. 53 958
[23] Campbell I A 1985 J. Phys. Lett. 46 L1159
[24] Campbell I A, Flesselles J M, Jullien R and Botet R 1987 J. Phys. C: Solid State Phys. 20 L47
[25] Campbell I A and de Arcangelis L 1990 Europhys. Lett. 13 587
[26] Campbell I A 1993 Europhys. Lett. 21 959
[27] de Almeida RMC, Lemke N and Campbell I A 2000 Brazilian J. Phys. 30 701
[28] de Almeida R M C, Lemke N and Campbell I A 2001 J. Mag. Mag. Mater. 226–230 1296
[29] Billoire A and Campbell I A 2011 Phys. Rev. B 84 054442
[30] Sherrington D and Kirkpatrick S 1975 Phys. Rev. Lett. 35 1792
[31] Nemoto K 1988 J. Phys. A: Math. Gen. 21 L287
[32] Palmer R G 1982 Adv. Phys. 31 669
[33] Read N 2014 Phys. Rev. E 90 032142
[34] Aydiner E 2005 Phys. Rev. E 71 046103
[35] Limoge Y and Boequet J L 1990 Phys. Rev. Lett. 65 60
[1] Nodes and layers PageRank centrality for multilayer networks
Lai-Shui Lv(吕来水), Kun Zhang(张琨), Ting Zhang(张婷), Meng-Yue Ma(麻孟越). Chin. Phys. B, 2019, 28(2): 020501.
[2] Diffusional inhomogeneity in cell cultures
Jia-Zheng Zhang(张佳政), Na Li(李娜), Wei Chen(陈唯). Chin. Phys. B, 2018, 27(2): 028705.
[3] Nonlinear fast-slow dynamics of a coupled fractional order hydropower generation system
Xiang Gao(高翔), Diyi Chen(陈帝伊), Hao Zhang(张浩), Beibei Xu(许贝贝), Xiangyu Wang(王翔宇). Chin. Phys. B, 2018, 27(12): 128202.
[4] Exact scaling for the mean first-passage time of random walks on a generalized Koch network with a trap
Zhang Jing-Yuan(张静远), Sun Wei-Gang(孙伟刚), and Chen Guan-Rong(陈关荣) . Chin. Phys. B, 2012, 21(3): 038901.
No Suggested Reading articles found!