Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 087802    DOI: 10.1088/1674-1056/25/8/087802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Microtrap on a concave grating reflector for atom trapping

Hui Zhang(张 慧)1, Tao Li(李涛)2, Ya-Ling Yin(尹亚玲)1, Xing-Jia Li(李兴佳)1, Yong Xia(夏 勇)1, Jian-Ping Yin(印建平)1
1 State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062, China;
2 National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
Abstract  We propose a novel scheme of optical confinement for atoms by using a concave grating reflector. The two-dimension grating structure with a concave surface shape exhibits strong focusing ability under radially polarized illumination. Especially, the light intensity at the focal point is about 100 times higher than that of the incident light. Such a focusing optical field reflected from the curved grating structure can provide a deep potential to trap cold atoms. We discuss the feasibility of the structure serving as an optical dipole trap. Our results are as follows. (i) Van der Waals attraction potential to the surface of the structure has a low effect on trapped atoms. (ii) The maximum trapping potential is ~1.14 mK in the optical trap, which is high enough to trap cold 87Rb atoms from a standard magneto-optical trap with a temperature of 120 μK, and the maximum photon scattering rate is lower than 1/s. (iii) Such a microtrap array can also manipulate and control cold molecules, or microscopic particles.
Keywords:  subwavelength structures      high-contrast gratings      beam focusing      laser trapping  
Received:  21 February 2016      Revised:  12 April 2016      Accepted manuscript online: 
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  92.60.Ta (Electromagnetic wave propagation)  
  87.80.Cc (Optical trapping)  
  37.10.Gh (Atom traps and guides)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374100, 91536218, and 11274114) and the Natural Science Foundation of Shanghai Municipality, China (Grant No. 13ZR1412800).
Corresponding Authors:  Yong Xia     E-mail:  yxia@phy.ecnu.edu.cn

Cite this article: 

Hui Zhang(张 慧), Tao Li(李涛), Ya-Ling Yin(尹亚玲), Xing-Jia Li(李兴佳), Yong Xia(夏 勇), Jian-Ping Yin(印建平) Microtrap on a concave grating reflector for atom trapping 2016 Chin. Phys. B 25 087802

[1] Tibuleac S and Magnusson R 1997 J. Opt. Soc. Am. A 14 1617
[2] Zhou Y, Huang M C Y and Chang-Hasnain C J 2008 IEEE Photon. Technol. Lett. 20 434
[3] Chase C, Rao Y, Hofmann W and Chang-Hasnain C J 2010 Opt. Express 18 15461
[4] Duan X, Huang Y, Ren X, Shang Y, Fan X and Hu F 2012 IEEE Photon. Technol. Lett. 24 863
[5] Lv Q, Pan P, Ye H, Yin D, Wang Y, Yang X and Han Q 2016 Chin. Phys. B 25 38505
[6] Nshii C C, Vangeleyn M, Cotter J P, Griffin P F, Hinds E A, Ironside C N, See P, Sinclair A G, Riis E and Arnold A S 2013 Nat. Nanotechnol. 8 321
[7] Huang M C Y, Zhou Y and Chang-Hasnain C J 2007 Nat. Photon. 1 119
[8] Fattal D, Li J, Peng Z, Fiorentino M and Beausoleil R G 2010 Nat. Photon. 4 466
[9] Lu F, Sedgwick F G, Karagodsky V, Chase C and Chang-Hasnain C J 2010 Opt. Express 18 12606
[10] Klemm A B, Stellinga D, Martins E R, Lewis L, Huyet G, O'Faolain L and Krauss T F 2013 Opt. Lett. 38 3410
[11] Lee J H, Yoon J W, Jung M J, Hong J K, Song S H and Magnusson R 2014 Appl. Phys. Lett. 104 233505
[12] Yu J, Ma H, Wang J, Li Y, Feng M and Qu S 2015 Chin. Phys. B 24 098102
[13] Duan X, Zhou G, Huang Y, Shang Y and Ren X 2015 Opt. Express 23 2639
[14] Yang B, Li Z, Yu Y and Yu J 2014 Chin. Phys. B 23 114206
[15] Grimm R, Weidemüller M and Ovchinnikov Y B 2000 Adv. At. Mol. Opt. Phys. 42 95
[16] Karagodsky V and Chang-Hasnain C J 2012 Opt. Express 20 10888
[17] Collin S 2014 Rep. Prog. Phys. 77 126402
[18] Chang-Hasnain C J and Yang W 2012 Adv. Opt. Photon. 4 379
[19] Landragin A, Courtois J Y, Labeyrie G, Vansteenkiste N, Westbrook C, and Aspect A 1996 Phys. Rev. Lett. 77 1464
[20] Kim J D and Lee Y G 2014 Biomed. Opt. Express 5 2471
[21] McGilligan J P, Griffin P F, Riis E and Arnold A S 2015 Opt. Express 23 8948
[1] Ultrasonic beam focusing characteristics of shear-vertical waves for contact-type linear phased array in solid
Yu-Xiang Dai(戴宇翔), Shou-Guo Yan(阎守国), Bi-Xing Zhang(张碧星). Chin. Phys. B, 2020, 29(3): 034304.
[2] Far-field vector-diffraction of off-axis parabolic mirror under oblique incidence
Xia-Hui Zeng(曾夏辉), Xi-Yao Chen(陈曦曜). Chin. Phys. B, 2020, 29(3): 034202.
[3] Comparison of single-neutral-atom qubit between in bright trap and in dark trap
Ya-Li Tian(田亚莉), Zhi-Hui Wang(王志辉), Peng-Fei Yang(杨鹏飞), Peng-Fei Zhang(张鹏飞), Gang Li(李刚), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(2): 023701.
[4] Physical manipulation of ultrathin-film optical interference for super absorption and two-dimensional heterojunction photoconversion
Guo-Yang Cao(曹国洋), Cheng Zhang(张程), Shao-Long Wu(吴绍龙), Dong Ma(马冬), Xiao-Feng Li(李孝峰). Chin. Phys. B, 2018, 27(12): 124202.
[5] Dynamic control of the terahertz rainbow trapping effect based on a silicon-filled graded grating
Shu-Lin Wang(王书林), Lan Ding(丁岚), Wen Xu(徐文). Chin. Phys. B, 2017, 26(1): 017301.
[6] High sensitivity refractive index gas sensing enhanced by surface plasmon resonance with nano-cavity antenna array
Zhao Hua-Jun (赵华君 ). Chin. Phys. B, 2012, 21(8): 087104.
[7] Focusing performance of small f-number metallic lens with depth-modulated slits
Gao Yang(高扬), Zhang Xue-Ru(张学如), Wang Yu-Xiao(王玉晓), Song Ying-Lin(宋瑛林), and Liu Shu-Tian(刘树田). Chin. Phys. B, 2010, 19(12): 124201.
No Suggested Reading articles found!