Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 044701    DOI: 10.1088/1674-1056/21/4/044701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Tortuosity for streamlines in porous media

Kou Jian-Long(寇建龙)a)†, Tang Xue-Ming(唐学明)b), Zhang Hai-Yan(张海燕)b), Lu Hang-Jun(陆杭军)a), Wu Feng-Min(吴锋民) a)‡, Xu You-Sheng(许友生)a), and Dong Yong-Sheng(董永胜)b)
a. College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua 321004, China;
b. Department of Physics, Jining Teachers College, Jining 012000, Inner Mongolia Autonomous Region, China
Abstract  An analysis of tortuosity for streamlines in porous media is presented by coupling the circle and square models. It is assumed that some particles in porous media do not overlap and that fluid in porous media is incompressible. The relationship between tortuosity and porosity is attained with different configurations by using a statistical method. In addition, the tortuosity fractal dimension is expressed as a function of porosity. Those correlations do not include any empirical constant. The percolation threshold and tortuosity fractal dimension threshold of porous media are also presented as: $\phi$c=0.32, DTc=1.07. The predicted correlations of the tortuosity and the porosity agree well with the existing experimental and simulated results.
Keywords:  tortuosity      tortuosity fractal dimension      porous media  
Received:  22 March 2011      Revised:  24 November 2011      Accepted manuscript online: 
PACS:  47.55.Mh  
  03.40.Kf  
  02.70  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10932010, 10972199, 11005093, 11072220, and 11079029), the Natural Science Foundation of Zhejiang Province of China (Grant No. Z6090556 and Y6100384), and the Research Project for the Higher Educational Institutions of Inner Mongolia Autonomous Region (Grant No. NJZZ11284).
Corresponding Authors:  Kou Jian-Long,kjl@zjnu.cn;Wu Feng-Min,wfm@zjnu.cn     E-mail:  kjl@zjnu.cn;wfm@zjnu.cn

Cite this article: 

Kou Jian-Long(寇建龙), Tang Xue-Ming(唐学明), Zhang Hai-Yan(张海燕), Lu Hang-Jun(陆杭军), Wu Feng-Min(吴锋民), Xu You-Sheng(许友生), and Dong Yong-Sheng(董永胜) Tortuosity for streamlines in porous media 2012 Chin. Phys. B 21 044701

[1] Wyllie M R J and Gregory A R 1955 Engi. Des. Process Dev. 47 1379
[2] Bear J 1972 Kynamics of Fluids in Porous Media (New York: Elsevier)
[3] Dullien F A L 1979 Porous Media, Fluid Transport and Pore Structure (San Diego: Academic)
[4] Yu B M and Li J H 2004 Chin. Phys. Lett. 21 1569
[5] Koponen A, Kataja M and Timonen J 1996 Phys. Rev. E 54 406
[6] Koponen A, Kataja M and Timonen J 1997 Phys. Rev. E 56 3319
[7] Comiti J and Ranaud M 1989 Chem. Eng. Sci. 44 1539
[8] Yuan M J, Yu B M, Zhang B and Huang M T 2005 Chin. Phys. Lett. 22 1464
[9] Zhang B Q and Liu X F 2003 AIChE Journal 44 3037
[10] Moldrup P T, Oleson T, Komatsu P and Schj K E 2001 Soil Sci. Soc. Am. J. 65 613
[11] Yuan M J, Yu B M, Xu P and Wu J S 2006 Can. J. Chem. Eng. 84 301
[12] Wheatcraft S W and Tyler S W 1988 Water Resour. Res. 24 566
[13] Montes J M, Cuevas F G and Cintas J 2007 Granular Material 9 401
[14] Matyka M, Khalili A and Koza Z 2008 Phys. Rev. E 78 026306
[15] Tang G H, Tao W Q and He Y L 2005 Phys. Rev. E 72 056301
[16] Dong X J, Hu Y F and Wu Y Y 2010 Chin. Phys. B 19 013601
[17] Kou J L, Lu H J, Wu F M and Xu Y S 2009 Chin. Phys. B 18 1533
[18] Liu Y M, Liu Z L and Huang L Y 2011 Acta Phys. Sin. 59 7991 (in Chinese)
[19] Xie T, Zou G H, Perrie W, Kuang H L and Chen W 2010 Chin. Phys. B 19 059201
[20] Cai J C, Yu B M, Zou M Q and Mei M F 2010 Chem. Eng. Sci. 65 5178
[21] Cai J C, Yu B M, Zou M Q and Luo L 2010 Energ. Fuel. 24 1860
[22] Yuan M J, Yu B M, Zheng W and Yuan J 2011 Acta Phys. Sin. 60 024703 (in Chinese)
[23] Kou J L, Y Liu, Wu F M, Fan J T, Lu H J and Xu Y S 2009 J. Appl. Phys. 106 054905
[24] Kou J L, Wu F M, Lu H J and Xu Y S 2009 Phys. Lett. A 374 62
[25] Ma J, Sun W G and Liao G X 2010 Chin. Phys. B 19 128901
[26] Bai K Z, Tan H L, Kong L J and Liu M R 2010 Chin. Phys. B 19 040510
[27] Wheatcraft S W and Tyler S W 1988 Water Resour. Res. 24 566
[28] Mandlbrot B B 1982 The Fractal Geometry of Nature (San Francisco: Freeman)
[29] Scholes O N, Clayton S A, Hoadley A F A and Tiu C 2006 Transport Porous Med. 68 365
[30] Vortmeyer D and Schuster J 1983 Chem. Eng. Sci. 38 1691
[31] Cheng P, Chowdhury P A and Hsu C T 1991 Computer Applications in Production Engineering ed. Kakc S, Kiki B, Kulacki F A and Arinc F (Dordrecht: Kluwer) pp. 625-653
[32] Yu B M and Li J H 2004 Chin. Phys. Lett. 21 117
[33] Katz A J and Thompson A H 1985 Phys. Rev. Lett. 54 1325
[34] Yu B M and Cheng P 2002 Int. J. Heat Mass. Transf. 45 2983
[35] Feder J 1988 Fractals (New York: Plenum)
[1] Shear-horizontal transverse-electric seismoelectric waves in cylindrical double layer porous media
Wei-Hao Wang(王伟豪), Xiao-Yan Zhu(朱晓焱), Jin-Xia Liu(刘金霞), and Zhi-Wen Cui(崔志文). Chin. Phys. B, 2021, 30(1): 014301.
[2] Frequency-dependent reflection of elastic wave from thin bed in porous media
Hong-Xing Li(李红星), Chun-Hui Tao(陶春辉), Cai Liu(刘财), Guang-Nan Huang(黄光南), Zhen-An Yao(姚振岸). Chin. Phys. B, 2020, 29(6): 064301.
[3] Numerical study on permeability characteristics of fractal porous media
Yongping Huang(黄永平), Feng Yao(姚峰), Bo Zhou(周博), Chengbin Zhang(张程宾). Chin. Phys. B, 2020, 29(5): 054701.
[4] Molecular dynamics simulation of decomposition and thermal conductivity of methane hydrate in porous media
Ping Guo(郭平), Yi-Kun Pan(潘意坤), Long-Long Li(李龙龙), Bin Tang(唐斌). Chin. Phys. B, 2017, 26(7): 073101.
[5] Experimental study and theoretical analysis of fluid resistance in porous media of glass spheres
Tong Wang(王彤), Kun-Can Zheng(郑坤灿), Yu-Peng Jia(贾宇鹏), Cheng-Lu Fu(付承鹭), Zhi-Jun Gong(龚志军), Wen-Fei Wu(武文斐). Chin. Phys. B, 2017, 26(7): 074701.
[6] A fractal approach to low velocity non-Darcy flow in a low permeability porous medium
Cai Jian-Chao (蔡建超). Chin. Phys. B, 2014, 23(4): 044701.
[7] Unsteady MHD flow and heat transfer near stagnation point over a stretching/shrinking sheet in porous medium filled with a nanofluid
Sadegh Khalili, Saeed Dinarvand, Reza Hosseini, Hossein Tamim, Ioan Pop. Chin. Phys. B, 2014, 23(4): 048203.
[8] Cross-diffusive effects on the onset of the double-diffusive convection in a horizontal saturated porous fluid layer heated and salted from above
Rajib Basu, G. C. Layek. Chin. Phys. B, 2013, 22(5): 054702.
[9] Simulation of the relationship between porosity and tortuosity in porous media with cubic particles
Tang Xiao-Wu (唐晓武), Sun Zu-Feng (孙祖峰), Cheng Guan-Chu (程冠初). Chin. Phys. B, 2012, 21(10): 100201.
[10] Acousto-electric well logging by eccentric source and extraction of shear wave
Cui Zhi-Wen(崔志文), Wang Ke-Xie(王克协), Hu Heng-Shan(胡恒山), and Sun Jian-Guo(孙建国). Chin. Phys. B, 2007, 16(3): 746-752.
[11] A method of solving the stiffness problem in Biot's poroelastic equations using a staggered high-order finite-difference
Zhao Hai-Bo(赵海波), Wang Xiu-Ming(王秀明), and Chen Hao(陈浩). Chin. Phys. B, 2006, 15(12): 2819-2827.
[12] Velocity overshoot of start-up flow for a Maxwellfluid in a porous half-space
Tan Wen-Chang(谭文长). Chin. Phys. B, 2006, 15(11): 2644-2650.
[13] Numerical simulation for separation of multi-phase immiscible fluids in porous media
Wu Bai-Zhi (吴柏志), Xu You-Sheng (许友生), Liu Yang (刘扬), Huang Guo-Xiang (黄国翔). Chin. Phys. B, 2005, 14(10): 2046-2051.
[14] Numerical analysis of fluid flow through a cylinder array using a lattice Boltzmann model
Dong Ping (董平), Feng Shi-De (冯士德), Zhao Ying (赵颖). Chin. Phys. B, 2004, 13(4): 434-440.
[15] A new method for simulation and analysis of displacement of fluids in porous media
Xu You-Sheng (许友生), Wu Feng-Min (吴锋民), Chen Yan-Yan (陈艳燕), Xu Xian-Zhi (徐献芝). Chin. Phys. B, 2003, 12(6): 621-625.
No Suggested Reading articles found!