CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Optimization of intergrain connection in high-temperature superconductor Bi2Sr2CaCu2Ox |
Li Cheng-Shan (李成山), Zhang Sheng-Nan (张胜楠), Hao Qing-Bin (郝清滨), Ma Xiao-Bo (马小波), Lu Tian-Ni (卢天倪), Zhang Ping-Xiang (张平祥) |
Superconducting Materials Research Center, Northwest Institute for Non-ferrous Metal Research, Xi'an 710016, China |
|
|
Abstract A modified spark plasma sintering (SPS) technique was developed for the fabrication of Bi2Sr2CaCu2Ox (Bi-2212) superconducting bulks with better intergrain connections. The influences of the modified SPS process on the microstructures, intergrain connections, and related superconducting properties were systematically analyzed. The modified SPS process can not only increase the final density of the bulk samples but also enhance the texture structures. Clean grain boundaries were obtained instead of the intergrain amorphous layers. Therefore the intergranular properties were obviously improved. Due to the better intergrain connections and the stronger flux pinning properties, the critical current densities of the Bi-2212 bulks obtained via the modified SPS process were greatly increased. The obtained improvements imply the possibility for the modified SPS technique to be used for enhancing the superconducting properties of the Bi-2212 tapes.
|
Received: 24 November 2014
Revised: 12 February 2015
Accepted manuscript online:
|
PACS:
|
74.72.-h
|
(Cuprate superconductors)
|
|
74.62.Bf
|
(Effects of material synthesis, crystal structure, and chemical composition)
|
|
74.25.-q
|
(Properties of superconductors)
|
|
74.25.Sv
|
(Critical currents)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CBA00104), the National Natural Science Foundation of China (Grant No. 51472206), the ITER Project of China (Grant No. 2013GB110001), and the Program for Innovative Research Team in Shaanxi Province, China (Grant No. 2013KCT-07). |
Corresponding Authors:
Zhang Sheng-Nan
E-mail: snzhang@c-nin.com
|
Cite this article:
Li Cheng-Shan (李成山), Zhang Sheng-Nan (张胜楠), Hao Qing-Bin (郝清滨), Ma Xiao-Bo (马小波), Lu Tian-Ni (卢天倪), Zhang Ping-Xiang (张平祥) Optimization of intergrain connection in high-temperature superconductor Bi2Sr2CaCu2Ox 2015 Chin. Phys. B 24 077401
|
[1] |
Miao H, Marken K R, Meinesz M, Czabaj B and Hong S 2005 IEEE Trans. Appl. Supercond. 15 2554
|
[2] |
Alexandrov A S, Zavaritsky V N, Liang W Y and Nevsky P L 1996 Phys. Rev. Lett. 76 983
|
[3] |
Byeon J, English C, McInturff A, McIntyre P and Sattarov A 2008 IEEE Trans. Appl. Supercond. 18 513
|
[4] |
Godeke A, Cheng D, Dietderich D R, English C D, Felice H, Hannaford C R, Prestemon S O, Sabbi G, Scanlan R M, Hikichi Y, Nishioka J and Hasegawa T 2008 IEEE Trans. Appl. Supercond. 18 516
|
[5] |
Weijers H M, Trociewitz U P, Markiewicz W D, Jiang J, Myers D, Hellstrom E E, Xu A, Jaroszynski J, Noyes P, Viouchkov Y and Larbalestier D C 2010 IEEE Trans. Appl. Supercond. 20 576
|
[6] |
Chen P, Trociewitz U P, Dalban-Canassy M, Jiang J, Hellstrom E E and Larbalestier D C 2013 Supercond. Sci. Technol. 26 075009
|
[7] |
Dalban-Canassy M, Myers D A, Trociewitz U P, Jiang J, Hellstrom E E, Viouchkov Y and Larbalestier D C 2012 Supercond. Sci. Technol. 25 11501 5
|
[8] |
Nakayama Y, Motohashi T, Otzschi K, Shimoyama J, Kitazawa K and Kishio K 2000 Phys. Rev. B 62 1452
|
[9] |
Cai D X, Jin X, Shen J C and Yao X X 1995 Chin. Phys. Lett. 12 42
|
[10] |
Coskun A, Ekicibil A, OJzcelik B and Kiymac K 2004 Chin. Phys. Lett. 21 2041
|
[11] |
Zhang H, Wu K, Feng Q R, Zhu X, Feng S Q and Gan Z Z 1996 Chin. Phys. Lett. 13 133
|
[12] |
Vinu S, Sarun P M, Biju A, Shabna R, Guruswamy P and Syamaprasad U 2008 Supercond. Sci. Technol. 21 045001
|
[13] |
Bulaevskii L N, Daemen L L, Maley M P and Coulter J Y 1993 Phys. Rev. B 48 13798
|
[14] |
Buhl D, Lang T and Gauckler L J 1997 Appl. Supercond. 4 299
|
[15] |
Stassen S, Vanderschueren A, Cloots R, Rulmont A and Ausloos M 1996 J. Cryst. Growth 166 281
|
[16] |
Jian J, Starch W L, Hannion M, Kametani F, Trociewitz U P, Hellstrom E E and Larbalestier D C 2011 Supercond. Sci. Technol. 24 082001
|
[17] |
Jiang J Y, Miao H P, Huang Y B, Hong S, Parrell J A, Scheuerlein C, Michiel M D, Ghosh A K, Trocitwitz U P, Hellstrom E E and Larbalestier D C 2013 IEEE Trans. Appl. Supercond. 23 6400206
|
[18] |
Kametani F, Lee E G, Shen T, Lee P J, Jiang J, Hellstrom E E and Larbalestier D C 2014 Supercond. Sci. Technol. 27 055004
|
[19] |
Jiang J, Miao H P, Huang Y B, Hong S, Parrell J A, Scheuerlein C, Michiel M D, Ghosh A K, Trociewitz U P, Hellstrom E E and Larbalestier D C 2013 IEEE Trans. Appl. Supercond. 23 6400206
|
[20] |
Eastell C J, Henry B M, Morgan C G, Grovenor C R M and Goringe M J 1997 IEEE Trans. Appl. Supercond. 7 2083
|
[21] |
Tsay Y N, Li Q, Zhu Y, Suenaga M, Shibutani K, Shigaki I and Ogawa R 1999 IEEE Trans. Appl. Supercond. 9 1662
|
[22] |
Munir Z A, Anselmi-Tamburini U and Ohyanagi M 2006 J. Mater. Sci. 41 763
|
[23] |
Tokita M 2013 Handbook of Advanced Ceramics (2nd Edn.) (Waltham: Elsevier)
|
[24] |
Eriksson M, Radwan M and Shen Z J 2013 International J. Retractory Matals and Hard Materials 36 31
|
[25] |
Noudem J G, Kenfaui D, Chateigner D and Gomina M 2011 J. Electron. Mater. 40 1100
|
[26] |
Shen J J, Zhang S N, Yang S H, Yin Z Z, Zhu T J and Zhao X B 2011 J. Alloy. Compd. 509 161
|
[27] |
Bah M, Giovannelli F, Schoenstein F, Feuillard G, Clezio E L and Monot-Laffez I 2014 Ceramics International 40 7473
|
[28] |
Singh A, and Harimkar S P 2010 J. Alloy. Compd. 497 121
|
[29] |
Kim Y H, Lee K H, Sung T H, Han S C, Han Y H, Jeong N H and No K S 2007 J. Electron. Mater. 36 1252
|
[30] |
Song K J, Park C, Kim S W, Ko R K, Ha H S, Kim H S, Oh S S, Kwon Y K, Moon S H and Yoo S I 2005 Physica C 426-431 588
|
[31] |
Aldica G, Batalu D, Popa S, Ivan I, Nita P, Sakka Y, Vasylkiv O, Miu L, Pasuk I and Badica P 2012 Physica C 477 43
|
[32] |
Suo H L, Wang Y, Ma H X, Ma L, Liu M, Zhao Y and Zhou M L 2007 Physica C 460-462 620
|
[33] |
Mao C B, Du Z H and Zhou L 1996 Science in China E2 181
|
[34] |
Ji H L, Jin X and Fan H C 1992 Chin. J. Low Temp. Phys. 14 12
|
[35] |
Salamati H and Kameli P 2004 Physica C 403 60
|
[36] |
Gul I H, Amin F, Abbasi A Z, Anis-ur-Rehman M and Maqsood A 2006 Physica C 449 139
|
[37] |
Mihalache V, Deac I G, Pop A V and Miu L 2011 Current Applied Physics 11 1010
|
[38] |
Kameli P, Salamati H and Eslami M 2006 Solid State Commun. 137 30
|
[39] |
Muller K H 1989 Physica C 159 717
|
[40] |
Pu M H, Feng Y, Zhang P X, Zhou L, Wang J X, Sun Y P and Du J J 2003 Physica C 386 41
|
[41] |
Zouaoui M, Ghattas A, Annabi M, Azzouz F B and Salem M B 2008 Supercond. Sci. Technol. 21 125005
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|