Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 076401    DOI: 10.1088/1674-1056/24/7/076401
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Load-redistribution strategy based on time-varying load against cascading failure of complex network

Liu Jun (刘军)a, Xiong Qing-Yu (熊庆宇)b c, Shi Xin (石欣)a, Wang Kai (王楷)a, Shi Wei-Ren (石为人)a
a School of Automation, Chongqing University, Chongqing 400044, China;
b Key Laboratory of Dependable Service Computing in Cyber Physical Society, Ministry of Education, China;
c School of Software Engineering, Chongqing University, Chongqing 400044, China
Abstract  Cascading failure can cause great damage to complex networks, so it is of great significance to improve the network robustness against cascading failure. Many previous existing works on load-redistribution strategies require global information, which is not suitable for large scale networks, and some strategies based on local information assume that the load of a node is always its initial load before the network is attacked, and the load of the failure node is redistributed to its neighbors according to their initial load or initial residual capacity. This paper proposes a new load-redistribution strategy based on local information considering an ever-changing load. It redistributes the loads of the failure node to its nearest neighbors according to their current residual capacity, which makes full use of the residual capacity of the network. Experiments are conducted on two typical networks and two real networks, and the experimental results show that the new load-redistribution strategy can reduce the size of cascading failure efficiently.
Keywords:  load redistribution      time-varying load      cascading failure      complex networks  
Received:  16 December 2014      Revised:  12 January 2015      Accepted manuscript online: 
PACS:  64.60.aq (Networks)  
  89.75.-k (Complex systems)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB328903), the Special Fund of 2011 Internet of Things Development of Ministry of Industry and Information Technology, China (Grant No. 2011BAJ03B13-2), the National Natural Science Foundation of China (Grant No. 61473050), and the Key Science and Technology Program of Chongqing, China (Grant No. cstc2012gg-yyjs40008).
Corresponding Authors:  Xiong Qing-Yu     E-mail:  cquxqy@163.com

Cite this article: 

Liu Jun (刘军), Xiong Qing-Yu (熊庆宇), Shi Xin (石欣), Wang Kai (王楷), Shi Wei-Ren (石为人) Load-redistribution strategy based on time-varying load against cascading failure of complex network 2015 Chin. Phys. B 24 076401

[1] Liu H K and Zhou T 2007 Acta Phys. Sin. 56 106 (in Chinese)
[2] Cai K Q, Zhang J, Du W B and Cao X B 2012 Chin. Phys. B 21 028903
[3] Kinney R, Crucitti P, Albert R and Latora V 2005 Eur. Phys. J. B 46 101
[4] Dobson I, Carreras B A, Lynch V E and Newman D E 2007 Chaos 17 026103
[5] Solé R V, Rosas-Casals M, Corominas-Murtra B and Valverde S 2008 Phys. Rev. E 77 026102
[6] Wang G Z, Cao Y J, Bao Z J and Han Z X 2009 Acta Phys. Sin. 58 3597 (in Chinese)
[7] Pastor-Satorras R, Vàzquez A and Vespignani A 2001 Phys. Rev. Lett. 87 258701
[8] Goh K I, Hahng B and Kim D 2002 Phys. Rev. Lett. 88 108701
[9] Chen S M, Pang S P and Zou X Q 2013 Chin. Phys. B 22 058901
[10] Du W B, Wu Z X and Cai K Q 2013 Physica A 392 3505
[11] Liu G, Li Y S and Zhang X P 2013 Chin. Phys. B 22 068901
[12] Liu C, Du W B and Wang W X 2014 PLOS One 9 e97822
[13] Duan D L and Zhan R J 2014 Acta Phys. Sin. 63 068902 (in Chinese)
[14] Motter A E and Lai Y C 2002 Phys. Rev. E 66 065102
[15] Wang W X and Chen G R 2008 Phys. Rev. E 77 026101
[16] Lehmann J and Bernasconi J 2010 Phys. Rev. E 81 031129
[17] Mirzasoleiman B, Babaei M, Jalili M and Safari M 2011 Phys. Rev. E 00 006100
[18] Wang J W 2013 Physica A 392 2257
[19] Nie S, Wang X, Zhang H, Li Q and Wang B 2014 PLoS One 9 e89066
[20] Wang J W and Rong L L 2009 Acta Phys. Sin. 58 3714 (in Chinese)
[21] Ren J L, Shen M X, Tong R and Gao H X 2011 Comput. Eng. Appl. 47 82 (in Chinese)
[22] Duan D L and Wu X Y 2014 Acta Phys. Sin. 63 030501 (in Chinese)
[23] Chen S M, Zou X Q, Lü H and Xu Q G 2014 Acta Phys. Sin. 63 028902 (in Chinese)
[24] Wang J W and Rong L L 2009 Physica A 388 1289
[25] Wang J W, Rong L L and Wang D 2010 Journal of Management Sciences in China 13 42 (in Chinese)
[26] Barabàsi A L and Albert R 1999 Science 286 509
[27] Watts D J and Strogatz S H 1998 Nature 393 440
[28] Albert R and Barabàsi A L 2002 Rev. Mod. Phys. 74 47
[29] The US power grid network dataset.
[30] The network of airports in the United States.
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[4] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[5] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[6] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[7] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[8] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[9] Improving robustness of complex networks by a new capacity allocation strategy
Jun Liu(刘军). Chin. Phys. B, 2021, 30(1): 016401.
[10] Analysis of overload-based cascading failure in multilayer spatial networks
Min Zhang(张敏), Xiao-Juan Wang(王小娟), Lei Jin(金磊), Mei Song(宋梅), Zhong-Hua Liao(廖中华). Chin. Phys. B, 2020, 29(9): 096401.
[11] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[12] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[13] Modeling and analysis of the ocean dynamic with Gaussian complex network
Xin Sun(孙鑫), Yongbo Yu(于勇波), Yuting Yang(杨玉婷), Junyu Dong(董军宇)†, Christian B\"ohm, and Xueen Chen(陈学恩). Chin. Phys. B, 2020, 29(10): 108901.
[14] Pyramid scheme model for consumption rebate frauds
Yong Shi(石勇), Bo Li(李博), Wen Long(龙文). Chin. Phys. B, 2019, 28(7): 078901.
[15] Theoretical analyses of stock correlations affected by subprime crisis and total assets: Network properties and corresponding physical mechanisms
Shi-Zhao Zhu(朱世钊), Yu-Qing Wang(王玉青), Bing-Hong Wang(汪秉宏). Chin. Phys. B, 2019, 28(10): 108901.
No Suggested Reading articles found!