CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electrical bistable devices using composites of zinc sulfide nanoparticles and poly-(N-vinylcarbazole) |
Cao Ya-Peng (曹亚鹏)a, Hu Yu-Feng (胡煜峰)a, Li Jian-Tao (李剑焘)a, Ye Hai-Hang (叶海航)b, Lü Long-Feng (吕龙锋)a, Ning Yu (宁宇)a, Lu Qi-Peng (鲁启鹏)a, Tang Ai-Wei (唐爱伟)b, Lou Zhi-Dong (娄志东)a, Hou Yan-Bing (侯延冰)a, Teng Feng (滕枫)a |
a Key Laboratory of Luminescence and Optical Information, Ministry of Education; Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China; b Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044, China |
|
|
Abstract N-dodecanethiol capped zinc sulfide (ZnS) nanocrystals were synthesized by the one-pot approach and blended with poly (N-vinylcarbazole) (PVK) to fabricate electrical bistable devices. The corresponding devices did exhibit electrical bistability and negative differential resistance (NDR) effects. A large ON/OFF current ratio of 104 at negative voltages was obtained by applying different amplitudes of sweeping voltage. The observed conductance switching and the negative differential resistance are attributed to the electric-field-induced charge transfer between the nanocrystals and the polymer, and the charge trapping/detrapping in the nanocrystals.
|
Received: 19 August 2014
Revised: 05 November 2014
Accepted manuscript online:
|
PACS:
|
72.20.-i
|
(Conductivity phenomena in semiconductors and insulators)
|
|
73.40.-c
|
(Electronic transport in interface structures)
|
|
77.55.dj
|
(For nonsilicon electronics (Ge, III-V, II-VI, organic electronics))
|
|
79.60.Fr
|
(Polymers; organic compounds)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61377028), the Natural Science Funds for Distinguished Young Scholar, China (Grant No. 61125505), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2014JBZ009). |
Corresponding Authors:
Hu Yu-Feng, Teng Feng
E-mail: yfhu@bjtu.edu.cn;fteng@bjtu.edu.cn
|
Cite this article:
Cao Ya-Peng (曹亚鹏), Hu Yu-Feng (胡煜峰), Li Jian-Tao (李剑焘), Ye Hai-Hang (叶海航), Lü Long-Feng (吕龙锋), Ning Yu (宁宇), Lu Qi-Peng (鲁启鹏), Tang Ai-Wei (唐爱伟), Lou Zhi-Dong (娄志东), Hou Yan-Bing (侯延冰), Teng Feng (滕枫) Electrical bistable devices using composites of zinc sulfide nanoparticles and poly-(N-vinylcarbazole) 2015 Chin. Phys. B 24 037201
|
[1] |
Chu C W, Ouyang J, Tseng J H and Yang Y 2005 Adv. Mater. 17 1440
|
[2] |
Scott J C and Bozano L D 2007 Adv. Mater. 19 1452
|
[3] |
Yang Y, Ouyang J, Ma L, Tseng R J H and Chu C W 2006 Adv. Funct. Mater. 16 1001
|
[4] |
Islam S M, Banerji P and Banerjee S 2014 Org. Electron. 15 144
|
[5] |
Lee J D, Seung H M, Kwon K C and Park J G 2011 Curr. Appl. Phys. 111 E25
|
[6] |
Li Y, Long S, Lü H, Liu Q, Wang Q, Wang Y, Zhang S, Lian W, Liu S and Liu M 2011 Chin. Phys. B 20 17305
|
[7] |
Shim J H, Jung J H, Lee M H, Kim T W, Son D I, Han A N and Kim S W 2011 Org. Electron. 12 1566
|
[8] |
Tang A, Teng F, Hou Y, Wang Y, Tan F, Qu S and Wang Z 2010 Appl. Phys. Lett. 96 163112
|
[9] |
Li J, Tang A, Li X, Cao Y, Wang M, Ning Y, Lv L, Lu Q, Lu Y, Hu Y, Hou Y and Teng F 2014 Nanoscale Res. Lett. 9 128
|
[10] |
Onlaor K, Thiwawong T and Tunhoo B 2014 Org. Electron. 15 1254
|
[11] |
Son D I, Kim J H, Park D H, Choi W K, Li F, Ham J H and Kim T W 2008 Nanotechnology 19 55201
|
[12] |
Son D I, You C H, Jung J H and Kim T W 2010 Appl. Phys. Lett. 97 13304
|
[13] |
Ye H, Tang A, Hou Y, Yang C and Teng F 2014 Opt. Mater. Express. 4 220
|
[14] |
Ye H, Tang A, Huang L, Wang Y, Yang C, Hou Y, Peng H, Zhang F and Teng F 2013 Langmuir 29 8728
|
[15] |
Reddy V S, Karak S and Dhar A 2009 Appl. Phys. Lett. 94 173304
|
[16] |
Chen J, Xu L, Lin J, Geng Y, Wang L and Ma D 2006 Semicond Sci. Tech. 21 1121
|
[17] |
Wang M L, Sun X Y, Zheng X Y, Li N, Gao X D, Ding B F, Ding X M and Hou X Y 2009 Org. Electron. 10 965
|
[18] |
Li D, Wang C, Tripkovic D, Sun S, Markovic N M and Stamenkovic V R 2012 ACS Catal. 2 1358
|
[19] |
Tang A, Teng F, Qian L, Hou Y and Wang Y 2009 Appl. Phys. Lett. 95 143115
|
[20] |
Burroughes J H, Jones C A and Friend R H 1988 Nature 335 137
|
[21] |
Kapoor A K, Jain S C, Poortmans J, Kumar V and Mertens R 2002 J. Appl. Phys. 92 3835
|
[22] |
Guillü O and Türüt A 2009 J. Appl. Phys. 106 103717
|
[23] |
Prakash A, Ouyang J, Lin J and Yang Y 2006 J. Appl. Phys. 100 54309
|
[24] |
Song Y, Ling Q D, Lim S L, Teo E Y H, Tan Y P, Li L, Kang E T, Chan D S H and Zhu C 2007 IEEE Electr. Device Lett. 28 107
|
[25] |
Song Y C, Liu X Y, Du G, Han R Q and Kang J F 2008 Chin. Phys. B 17 2678
|
[26] |
Zhang T, Bai Y, Jia C and Zhang W 2012 Chin. Phys. B 21 107304
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|