Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 110506    DOI: 10.1088/1674-1056/24/11/110506
GENERAL Prev   Next  

Performance characteristics of low-dissipative generalized Carnot cycles with external leakage losses

Huang Chuan-Kun (黄传昆)a, Guo Jun-Cheng (郭君诚)b, Chen Jin-Can (陈金灿)a
a Department of Physics, Xiamen University, Xiamen 361005, China;
b College of Physics and Information Engineering, Fuzhou University, Fuzhou 350002, China
Abstract  Under the assumption of low-dissipation, a unified model of generalized Carnot cycles with external leakage losses is established. Analytical expressions for the power output and efficiency are derived. The general performance characteristics between the power output and the efficiency are revealed. The maximum power output and efficiency are calculated. The lower and upper bounds of the efficiency at the maximum power output are determined. The results obtained here are universal and can be directly used to reveal the performance characteristics of different Carnot cycles, such as Carnot heat engines, Carnot-like heat engines, flux flow engines, gravitational engines, chemical engines, two-level quantum engines, etc.
Keywords:  generalized Carnot cycle      low-dissipation      unified model      performance characteristic  
Received:  21 May 2015      Revised:  18 July 2015      Accepted manuscript online: 
PACS:  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  05.20.-y (Classical statistical mechanics)  
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11405032).
Corresponding Authors:  Guo Jun-Cheng, Chen Jin-Can     E-mail:  junchengguo@qq.com;jcchen@xmu.edu.cn

Cite this article: 

Huang Chuan-Kun (黄传昆), Guo Jun-Cheng (郭君诚), Chen Jin-Can (陈金灿) Performance characteristics of low-dissipative generalized Carnot cycles with external leakage losses 2015 Chin. Phys. B 24 110506

[1] Linke H, Humphrey T E, Löfgren A, Sushkov A O, Newbury R, Taylor R P and Omling P;1999 Science 286 2314
[2] Blickle V and Bechinger C 2012 Nat. Phys. 8 143
[3] Fialko O and Hallwood D W 2012 Phys. Rev. Lett. 108 085303
[4] He J, Li Cong and Zhang Y;2013 Chin. Phys. Lett. 30 100501
[5] Zhang Y and He J;2013 Chin. Phys. Lett. 30 010501
[6] Xiao Y, He J and Cheng H;2014 Acta Phys. Sin. 63 200501 (in Chinese)
[7] Li J, Chen L, Ge Y and Sun F;2013 Acta Phys. Sin. 62 130501 (in Chinese)
[8] Liu N, Luo X and Zhang M;2014 Chin. Phys. B 23 080502
[9] Cheng X T and Liang X G;2015 Chin. Phys. B 24 060510
[10] van den Broeck C;2005 Phys. Rev. Lett. 95 190602
[11] Esposito M, Lindenberg K and van den Broeck C;2009 Phys. Rev. Lett. 102 130602
[12] Esposito M, Lindenberg K and van den Broeck C;2009 Europhys. Lett. 85 60010
[13] Izumida Y and Okuda K;2012 Europhys. Lett. 97 10004
[14] Izumida Y and Ito N;2013 Eur. Phys. J. B 86 431
[15] Tu Z C;2012 Chin. Phys. B 21 020513
[16] Esposito M, Kawai R, Lindenberg K and van den Broeck C;2010 Phys. Rev. Lett. 105 150603
[17] Sheng S and Tu Z C;2013 J. Phys. A: Math. Theor. 46 402001
[18] Curzon F L and Ahlborn B;1975 Am. J. Phys. 43 22
[19] de Tomás C, Hernández A C and Roco J M M;2012 Phys. Rev. E 85 010104
[20] Wang Y, Li M, Tu Z C, Hernández A C and Roco J M M;2012 Phys. Rev. E 86 011127
[21] Guo J, Wang Y and Chen J;2012 J. Appl. Phys. 112 103504
[22] Guo J, Wang J, Wang Y and Chen J;2013 J. Appl. Phys. 113 143510
[23] Gordon J M;1991 Am. J. Phys. 59 551
[24] Izumida Y, Okuda K, Hernández A C and Roco J M M;2013 Europhys. Lett. 101 10005
[25] Chen J;1994 J. Phys. D: Appl. Phys. 27 1144
[26] Leff H S;1987 Am. J. Phys. 55 602
[27] Landsberg P T and Leff H S;1989 J. Phys. A: Math. Gen. 22 4019
[28] Zhang Y, Lin B and Chen J;2005 J. Appl. Phys. 97 084905
[29] Bejan A;1996 Int. J. Heat Mass Transfer 39 1175
[30] Chen L, Bi Y and Wu C;1999 J. Phys. D: Appl. Phys. 32 1346
[31] Hu W and Chen J;2006 J. Phys. D: Appl. Phys. 39 993
[32] De Vos A;1991 J. Phys. Chem. 95 4534
[33] Gordon J M and Orlov V N;1993 J. Appl. Phys. 74 5303
[34] Lin G, Chen J and Brück E;2004 Appl. Energ. 78 123
[35] Xia S, Chen L and Sun F;2009 J. Appl. Phys. 105 124905
[36] Bender C M, Brody D C and Meister B K;2000 J. Phys. A: Math. Gen. 33 4427
[37] Abe S;2011 Phys. Rev. E 83 041117
[38] Abe S and Okuyama S;2011 Phys. Rev. E 83 021121
[39] Abe S and Okuyama S;2012 Phys. Rev. E 85 011104
[40] Wang J and He J;2012 J. Appl. Phys. 111 043505
[41] Guo J, Wang J, Wang Y and Chen J;2013 Phys. Rev. E 87 012133
[42] Ge Y, Chen L and Sun F;2008 Appl. Energy 85 618
[43] Chen L, Zheng T, Sun F and Wu C;2003 Int. J. Ambient Energy 24 195
[44] Zhang Y, Ou C, Lin B and Chen J 2005 J. Energy Res. Technol. 128 216
[45] Zhou Y, Tyagi S K, Wu C and Chen J 2005 Int. J. Ambient Energy 26 37
[46] Wu C and Kiang R L;1990 Int. J. Ambient Energy 11 129
[47] Chen L, Lin J, Luo J, Sun F and Wu C;2002 Int. J. Energy Res. 26 965
[48] Zhao Y, Lin B, Zhang Y and Chen J;2006 Energy Convers. Manage. 47 3383
[49] Zhao Y and Chen J;2006 Appl. Energy 83 789
[50] Ge Y, Chen L, Sun F and Wu C;2007 J. Energy Inst. 80 52
[51] Geva E and Kosloff R;1992 J. Chem. Phys. 97 4398
[52] Geva E and Kosloff R;1992 J. Chem. Phys. 96 3054
[53] Wu F, Chen L, Wu S, Sun F and Wu C;2006 J. Chem. Phys. 124 214702
[54] Cheng X and Liang X;2013 Chin. Phys. B 22 010508
[55] Zhou B, Cheng X and Liang X;2013 Chin. Phys. B 22 084401
[56] Wang W, Cheng X and Liang X;2013 Chin. Phys. B 22 110506
[1] Entangled quantum heat engine based on two-qubit Heisenberg XY model
He Ji-Zhou(何济洲), He Xian(何弦), and Zheng Jie(郑洁) . Chin. Phys. B, 2012, 21(5): 050303.
[2] Performance characteristics and optimal analysis of a nonlinear diode refrigerator
Wang Xiu-Mei(王秀梅), He Ji-Zhou(何济洲), and Liang Hong-Ni(梁红妮). Chin. Phys. B, 2011, 20(2): 020503.
[3] The Onsager reciprocity relation and generalized efficiency of a thermal Brownian motor
Gao Tian-Fu(高天附), Zhang Yue(张悦), and Chen Jin-Can(陈金灿). Chin. Phys. B, 2009, 18(8): 3279-3286.
No Suggested Reading articles found!