Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 078702    DOI: 10.1088/1674-1056/23/7/078702
Special Issue: TOPICAL REVIEW — Statistical Physics and Complex Systems
TOPICAL REVIEW—Statistical Physics and Complex Systems Prev   Next  

Collective behaviors of suprachiasm nucleus neurons under different light-dark cycles

Gu Chang-Gui (顾长贵)a, Zhang Xin-Hua (张新华)b, Liu Zong-Hua (刘宗华)a
a Department of Physics, East China Normal University, Shanghai 200062, China;
b Jinhua Middle School, Shanghai 200333, China
Abstract  The principal circadian clock in the suprachiasm nucleus (SCN) regulates the circadian rhythm of physiological and behavioral activities of mammals. Except for the normal function of the circadian rhythm, the ensemble of SCN neurons may show two collective behaviors, i.e., a free running period in the absence of a light-dark cycle and an entrainment ability to an external T cycle. Experiments show that both the free running periods and the entrainment ranges may vary from one species to another and can be seriously influenced by the coupling among the SCN neurons. We here review the recent progress on how the heterogeneous couplings influence these two collective behaviors. We will show that in the case of homogeneous coupling, the free running period increases monotonically while the entrainment range decreases monotonically with the increase of the coupling strength. While in the case of heterogenous coupling, the dispersion of the coupling strength plays a crucial role. It has been found that the free running period decreases with the increase of the dispersion while the entrainment ability is enhanced by the dispersion. These findings provide new insights into the mechanism of the circadian clock in the SCN.
Keywords:  suprachiasm nucleus      light-dark cycle      free running period      entrainment range  
Received:  25 November 2013      Revised:  20 January 2014      Accepted manuscript online: 
PACS:  87.18.Yt (Circadian rhythms)  
  05.45.Xt (Synchronization; coupled oscillators)  
  87.18.Sn (Neural networks and synaptic communication)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11135001 and 11375066), the Joriss Project, China (Grant No. 78230050), and the National Basic Research Program of China (Grant No. 2013CB834100).
Corresponding Authors:  Liu Zong-Hua     E-mail:  zhliu@phy.ecnu.edu.cn
About author:  87.18.Yt; 05.45.Xt; 87.18.Sn

Cite this article: 

Gu Chang-Gui (顾长贵), Zhang Xin-Hua (张新华), Liu Zong-Hua (刘宗华) Collective behaviors of suprachiasm nucleus neurons under different light-dark cycles 2014 Chin. Phys. B 23 078702

[1] Pittendrigh C S and Daan S 1976 J. Comp. Physiol. A 106 333
[2] Pittendrigh C S 1993 Annu. Rev. Physiol. A 55 17
[3] Refinetti R 2006 Circadian Physiology (2nd edn.) (Florida: CRC Press)
[4] Welsh D K, Takahashi J S and Kay S A 2010 Annual. Rev. Physio. 55 72
[5] de la Iglesia H O, Meyer J Jr A C and Schwartz W J 2000 Science 290 799
[6] Pickard G E and Turek F W 1982 Science 215 1119
[7] Ahlgren A and Halberg F 1990 Cycles of Nature: An Introduction to Biological Rhythms (Washington D C: National Science Teachers Association)
[8] Czeisler C A 1999 Science 284 2177
[9] Daido H 2001 Phys. Rev. Lett. 87 048101
[10] Campuzano A, Vilaplana J, Cambras T and Diez-Noguera A 1998 Physiol. Behav. 63 171
[11] Abraham U, Granada A E, Westermark P O, Heine M and Kramer A 2010 Mol. Syst. Biol. 6 438
[12] Reppert S M and Weaver D R 2002 Nature 418 935
[13] Herzog E D 2007 Nat. Rev. Neurosci. 8 790
[14] Welsh D K, Logothetis D E, Meister M and Reppert S M 1995 Neuron 14 697
[15] Honma S, Nakamura W, Shirakawa T and Honma K 2004 Neurosci.Lett. 358 173
[16] Reppert S M and Weaver D R 2001 Annu. Rev. Physiol. 63 647
[17] Yan J, Wang H, Liu Y and Shao C 2008 PLoS Comput. Biol. 4 e1000193
[18] Aton S J and Colwell C S 2005 Nat. Neurosci. 8 476
[19] Albus H, Vansteensel M J, Michel S, Block G D and Meijer J H 2005 Curr. Biol. 15 886
[20] Silver R and Schwartz W J 2005 Methods. Enzymol. 393 4515
[21] Morin L P 2007 J. Biol. Rhythms. 22 3
[22] Meijer J H and Schwartz W J 2003 J. Biol. Rhythms. 18 235
[23] VanderLeest H T, Rohling J H, Michel S and Meijer J H 2009 PLoS ONE 4 e4976
[24] Rohling J H, VanderLeest H T, Michel S, Vansteensel M J and Meijer J H 2011 PLoS One 6 e25437
[25] Meijer J H, Groos G A and Rusak B 1986 Brain Res. 382 109
[26] Michel S, Marek R and VanderLeest H T 2013 Eur. J. Neurosci. 37 964
[27] Gu C, Wang J and Liu Z 2009 Phys. Rev. E 80 030904(R)
[28] Gu C, Wang J, Wang J and Liu Z 2011 Phys. Rev. E 83 046224
[29] Gu C, Liu Z, Schwartz W J and Indic P 2012 PLoS ONE 7 e36900
[30] Gu C, Xu J, Liu Z and Rholing J H T 2013 Phys. Rev. E 88 022702
[31] Gonze D, Bernard S, Waltermann C, Kramer A and Herzel H 2005 Biophys. J. 89 120
[32] Bernard S, Gonze D, Cajavec B, Herzel H and Kramer A 2007 PLoS Comput. Biol. 3 e6
[33] Bordyugov G, Granada A E and Herzel H 2011 Eur. J. Phy. B 82 227
[34] Yamaguchi S, Isejima H, Matsuo T, Okura R and Yagita K 2003 Science 302 1408
[35] Schwartz W J and Meijer J H 2004 Trends Neurosci. 27 513
[36] Mendoza J, Pévet P and Challet E 2008 J. Physiol. 586 5901
[37] Coomans C P, van den Berg S A A and Lucassen E A 2012 Diabetes 62 1102
[38] Houben T, Deboer T, van Oosterhout F and Meijer J H 2009 J. Biol. Rhythms 24 499
[39] van Oosterhout F, Lucassen E A, Houben T, van der Leest H T, Antle M C and Meijer J H 2012 PLoS ONE 7 e39693
[40] Melo P, Goncalves B, Menezes A and Azevedo C 2013 Chronobiol. Int. 30 818
[41] Farajnia S 2012 J. Neurosci. 32 5891
[42] Eastman C I, Molina T A, Dziepak M E and Smith M R 2012 Chronobiol. Int. 29 1072
[43] Hu K, Meijer J H and Shea S A 2012 PLoS ONE 7 e48927
[44] Honma S, Shirakawab T, Katsunoa Y, Namihiraa M and Honmaa K 1998 Neurosci. Lett. 250 157
[45] Aton S J and Herzog E D 2005 Neuron 48 531
[46] Ohta H, Yamazaki S and McMahon D G 2005 Nat. Neurosci. 8 267
[47] Yan L, Foley N C, Bobula J M, Kriegsfeld L J and Silver R 2005 J. Neurosci. 25 9017
[48] http://en.wikipedia.org/wiki/Circadian_rhythm
[49] Duffy J F, Rimmer D W and Czeisler C A 2001 Behav. Neurosci. 115 895
[50] http://en.wikipedia.org/wiki/Non-24-hour_sleep%E2%80%93wake_disorder
[51] Boivin D B, James F O and Santo J B 2003 Neurology 60 1841
[52] Reddy A B, Field M D, Maywood E S and Hastings M H 2002 J. Neurosci. 22 7326
[53] http://en.wikipedia.org/wiki/Jet_lag
[54] Gronfier C, Wright K P, Kronauer R E and Czeisler C A 2007 Proc. Natl. Acad. Sci. USA 104 9081
[55] de la Iglesia H O, Cambras T, Schwartz W J and Diez-Noguera A 2004 Curr. Biol. 14 796
[56] Schwartz M D, Wotus C, Liu T, Friesen W O and Borjigin J 2009 Proc. Natl. Acad. Sci. USA 106 17540
[57] Usui S, Takahashi Y and Okazak T 2000 Am. J. Physiol. Regulatory Integrative Comp. Physiol. 278 R1148
[58] Boulos Z, Macchi M M and Terman M 2002 J. Biol. Rhythms 17 353
[59] Ruoff P and Rensing L 1996 J. Theor. Biol. 179 275
[60] Leloup J C, Gonze D and Goldbeter A 1999 J. Biol. Rhythms 14 433
[61] Li Y, Zhang J and Liu Z 2006 Int. J. Nonlin. Sci. 1 131
[62] Locke J C W, Westermark P O, Kramer A and Herzel H 2008 BMC Syst. Biol. 2 22
[63] Ullner E, Buceta J, Diez-Noguera A and Garcia-Ojalvo J 2009 Biophys. J. 96 3573
[64] Xu J, Gu C, Pumir A, Garnie N and Liu Z 2012 Phys. Rev. E 86 041903
[65] Indic P, Schwartz W J and Paydarfar D 2008 J. R. Soc. Interface 5 873
[66] Mrosovsky N 1996 Biol. Rev. Camb. Philos. Soc. 71 343
[67] Gu C, Ramkisoensing A, Liu Z, Meijer J H and Rohling J H T 2014 J. Biol. Rhythms. 29 16
[68] Granada A, Hennig R M, Ronacher B, Kramer A and Herzel H 2009 Methods Enzymol. 454 1
[69] Pendergast J S, Friday R C and Yamazaki S 2010 J. Neurosci. 30 12179
[1] Entrainment range affected by the difference in sensitivity to light-information between two groups of SCN neurons
Bao Zhu(朱宝), Jian Zhou(周建), Mengting Jia(贾梦婷), Huijie Yang(杨会杰), Changgui Gu(顾长贵). Chin. Phys. B, 2020, 29(6): 068702.
[2] Entrainment range affected by the heterogeneity in the amplitude relaxation rate of suprachiasmatic nucleus neurons
Chang-Gui Gu(顾长贵), Ping Wang(王萍), Hui-Jie Yang(杨会杰). Chin. Phys. B, 2019, 28(1): 018701.
No Suggested Reading articles found!