Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 030308    DOI: 10.1088/1674-1056/23/3/030308
GENERAL Prev   Next  

An adiabatic quantum optimization for exact cover 3 problem

Zhang Ying-Yu (张映玉), Xu Li-Li (许丽莉), Li Jun-Qing (李俊青)
School of Computer Science, Liaocheng University, Liaocheng 252000, China
Abstract  A perturbation method is applied to study the structure of the ground state of the adiabatic quantum optimization for the exact cover 3 problem. It is found that the instantaneous ground state near the end of the evolution is mainly composed of the eigenstates of the problem Hamiltonian, which are Hamming close to the solution state. And the instantaneous ground state immediately after the starting is mainly formed of low energy eigenstates of the problem Hamiltonian. These results are then applied to estimate the minimum gap for a special case.
Keywords:  adiabatic quantum optimization      exact cover 3 problem      perturbation expansion  
Received:  07 July 2013      Revised:  26 August 2013      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61173050).
Corresponding Authors:  Zhang Ying-Yu     E-mail:  zhangyingyu@lcu-cs.com

Cite this article: 

Zhang Ying-Yu (张映玉), Xu Li-Li (许丽莉), Li Jun-Qing (李俊青) An adiabatic quantum optimization for exact cover 3 problem 2014 Chin. Phys. B 23 030308

[1] Shor P 1997 SIAM J. Comput. 26 1484
[2] Grover L K 1997 Phys. Rev. Lett. 79 325
[3] Farhi E, Goldstone J, Gutmann S, Lapan J, Lundgren A and Preda D 2001 Science 292 472
[4] Roland J and Cerf N J 2002 Phys. Rev. A 65 042308
[5] Lu Y, Dong P, Xue Z Y and Cao Z L 2008 Chin. Phys. B 17 3220
[6] Tulsi A 2009 Phys. Rev. A 80 052328
[7] Zhang Y Y, Hu H P and Lu S F 2011 Chin. Phys. B 20 040309
[8] Sun J, Lu S F, Liu F and Yang L P 2012 Chin. Phys. B 21 010306
[9] Hogg T 2003 Phys. Rev. A 67 022314
[10] Reichardt B W 2004 Proceedings of the Thirty-sixth Annual ACM Symposium on Theory of Computing (New York: American Computer Society)
[11] Znidaric M and Horvat M 2006 Phys. Rev. A 73 022329
[12] Young A P, Sknysh S and Smelyanskiy V N 2008 Phy. Rev. Lett. 101 170503
[13] Dickson N G and Amin M H S 2011 Phys. Rev. Lett. 106 050502
[14] Dickson N G and Amin M H 2012 Phys. Rev. A 85 032303
[15] Farhi E, Goldstone J, Gutmann S and Nagaj D 2008 Int. J. Quantum. Inform. 6 503
[16] Amin M H S 2008 Phys. Rev. Lett. 100 130503
[1] Derivation of quantum Chernoff metric with perturbation expansion method
Zhong Wei (钟伟), Ma Jian (马健), Liu Jing (刘京), Wang Xiao-Guang (王晓光). Chin. Phys. B, 2014, 23(9): 090305.
[2] Vertically forced surface wave in weakly viscous fluids bounded in a circular cylindrical vessel
Jian Yong-Jun (菅永军), E Xue-Quan (鄂学全). Chin. Phys. B, 2004, 13(8): 1191-1200.
No Suggested Reading articles found!