Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 030202    DOI: 10.1088/1674-1056/23/3/030202
GENERAL Prev   Next  

Elastic behavior of disclination dipole near nanotube with surface/interface effect

Zhao Ying-Xin (赵迎新)a, Zeng Xin (曾鑫)a, Chen Chang-Ping (陈昌萍)b
a State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China;
b College of Civil Engineering and Architecture, Xiamen University of Technology, Xiamen 361024, China
Abstract  In this paper, we present an analytical solution of the interaction of the nanotube (NT) with a wedge disclination dipole in nanotube-based composites. The corresponding boundary value problem is solved exactly by using complex potential functions. The explicit expression of the force exerted on disclination dipole is given by using the generalized Peach–Koehler formula. As a numerical illustration, both the equilibrium position and the stability of the disclination dipole are evaluated for different material combinations, relative thickness of an NT, surface/interface effects, and the features of the disclination dipole. The results show that as the thickness of the NT layer increases, the NT has a relatively major role in the force acting on the disclination dipole in the NT-based composite. The cooperative effect of surface/interface stresses and the NT becomes considerable as the increase of NT layer thickness. The equilibrium position may occur, even more than one, due to the influences of the surface/interface stress and the NT thickening. The influences of the surface/interface stresses and the thickness of the NT layer on the force are greatly dependent on the disclination angle.
Keywords:  nanotube-based composites      disclination dipole      nanotube thickness      surface/interface effect  
Received:  08 May 2013      Revised:  18 July 2013      Accepted manuscript online: 
PACS:  02.30.Fn (Several complex variables and analytic spaces)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
  68.35.Gy (Mechanical properties; surface strains)  
  61.46.Np (Structure of nanotubes (hollow nanowires))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11172094 and 11172095), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-11-0122), and the Hunan Provincial Natural Science Foundation for Creative Research Groups, China (Grant No. 12JJ7001).
Corresponding Authors:  Zhao Ying-Xin     E-mail:  zhaoyx565@163.com

Cite this article: 

Zhao Ying-Xin (赵迎新), Zeng Xin (曾鑫), Chen Chang-Ping (陈昌萍) Elastic behavior of disclination dipole near nanotube with surface/interface effect 2014 Chin. Phys. B 23 030202

[1] Zhou K, Hoh H J, Wang X, Keer L M, Pang J H L, Song B and Wang Q J 2013 Mech. Mater. 60 144
[2] Zhan G D, Kuntz J D, Wan J and Mukherjee A K 2002 Nature 2 38
[3] Fu W Q, Wei Y, Zhu F, Liu L, Jiang K L, Li Q Q and Fan S S 2010 Chin. Phys. B 19 088104
[4] Chen H, Chu K, Jia C, Liang X, Guo H and Qu X 2011 Mater. Sci. Technol. 27 713
[5] Feng D L, Feng Y H, Chen Y, Li W and Zhang X X 2013 Chin. Phys. B 22 016501
[6] Chopra N G, Luyken R J, Cherrey K, Crespi V H, Cohen M L, Louie S G and Zettl A 1995 Science 269 966
[7] Zhang Z H, Guo W L and Dai Y T 2009 J. Appl. Phys. 105 084312
[8] Wang Y L, Zhang J P, Su K H, Wang X, Liu Y and Sun X 2012 Chin. Phys. B 21 060301
[9] Pan R J, Wu Y C and Liew K Y 2010 Appl. Surf. Sci. 256 6564
[10] Zhang T H, Piao L Y, Zhao S L, Xu Z, Wu Q and Kong C 2012 Chin. Phys. B 21 118401
[11] Iijima S 1991 Nature 354 56
[12] Thess A, Lee R, Nikolaev P, Dai H J, Petit P, Robert J, Xu C, Lee Y H, Kim S G, Rinzler A G, Colbert D T, Scuseria G E, Tománek D, Fischer J E and Smalley R E 1996 Science 273 483
[13] Qian D, Wagner G J, Liu W K, Yu M F and Ruoff R S 2002 Appl. Mech. Rev. 55 495
[14] Luo Y P, Tien L G, Tsai C H, Lee M H and Li F Y 2011 Chin. Phys. B 20 017302
[15] Sun Y F, Sun J D, Zhang X Y, Qin H, Zhang B S and Wu D M 2012 Chin. Phys. B 21 108504
[16] Wang Y, Zhao Y J and Huang J P 2012 Chin. Phys. B 21 076102
[17] Volterra V 1907 Ann. Ecole Normale Sup. Paris 24 401
[18] Romanov A E and Vladimirov V I 1992 Dislocations in Solids Vol. 9 (Amsterdam: Elsevier Science Publishers B.V.) p. 191
[19] Romanov A E 1993 Mater. Sci. Eng. A 164 58
[20] Murayama M, Howe J M, Hidaka H and Takaki S 2002 Science 295 2433
[21] Fang Q H, Liu Y W, Jiang C P and Li B 2006 Eng. Fract. Mech. 73 1235
[22] Qi W K, Zhu T, Chen Y and Ren J R 2009 Chin. Phys. B 18 1002
[23] Zhou K and Wu M S 2010 Int. J. Eng Sci. 48 237
[24] Kleman M 1983 Points, Lines and Walls (New York: Wiley-Interscience) pp. 220–224
[25] Hudson S D 1998 Curr. Opin. Colloid Interface Sci. 3 125
[26] Klimanek P, Klemm V, Romanov A E and Seefeldt M 2001 Adv. Eng. Mater. 3 1438
[27] Nye J F 1983 Proc. R. Soc. A 387 105
[28] Chou T W and Malasky H J 1979 Geophys. Res. B 84 6083
[29] Parameswaran V R 1979 Specul. Sci. Technol. 4 509
[30] Zhou K, Nazarov A A and Wu M S 2008 Philos. Mag. 88 3181
[31] Romanov A E 2003 Eur. J. Mech. A. Solids 22 727
[32] Song H P, Fang Q H and Liu Y W 2010 Chin. Phys. B 19 056102
[33] Birringer R and Gleiter H 1988 Advances in Materials Science, Encyclopedia of Materials Science and Engineering Vol. 1 (Oxford: Pergamon) pp. 339–349
[34] Gleiter H 1989 Progr. Mater. Sci. 33 223
[35] Gutkin M Y and Ovid’ko I A 2003 Rev. Adv. Mater. Sci. 4 79
[36] Gryaznov V G and Trusov L I 1993 Prog. Mater. Sci. 37 289
[37] Romanov A E 1998 Nanostructured Materials: Science and Technology (Dordrecht Boston London: Kluwer Academic) pp. 207–242
[38] Gutkin M Y, Ovid’ko I A and Pande C S 2001 Rev. Adv. Mater. Sci. 2 80
[39] Gryaznov V G and Trusov L I 1993 Prog. Mater. Sci. 37 289
[40] Wu M S, Zhou K and Nazarov A A 2007 Phys. Rev. B 76 134105
[41] Song H P, Fang Q H and Liu Y W 2008 Chin. Phys. B 17 4592
[42] Luo J, Xiao Z M and Zhou K 2009 Int. J. Eng Sci. 47 811
[43] Feng H, Fang Q H, Zhang L C and Liu Y W 2013 Int. J. Plast. 42 50
[44] Kolesnikova A L, Romanov A E and Ovid’ko I A 2002 Solid State Phenom. 87 265
[45] Ovid’ko I A, Sheinerman A G and Skiba N V 2003 J. Phys.: Condens. Matter 15 1173
[46] Shodja H M, Gutkin M Yu and Moeini-Ardakani S S 2011 Phys. Status Solidi B 248 1437
[47] Moeini-Ardakani S S, Gutkin M Yu and Shodja H M 2011 Scripta Mater. 64 709
[48] Gurtin M E and Murdoch A I 1975 Arch. Ration. Mech. Anal. 57 291
[49] Gurtin M E, Weissmuller J and Larche F 1998 Philos. Mag. A 78 1093
[50] Fang Q H and Liu Y W 2006 Acta Mater. 54 4213
[51] Fang Q H and Liu Y W 2006 Scripta Mater. 55 99
[52] Liu Y W and Fang Q H 2007 Mater. Sci. Eng. A 464 117
[53] Fang Q H, Liu Y W, Jin B and Wen P H 2009 Int. J. Solids Struct. 46 1539
[54] Luo J and Liu F 2011 Eur. J. Mech. A. Solids 30 22
[55] Ahmadzadeh-Bakhshayesh H, Gutkin M Yu and Shodja H M 2012 Int. J. Solids Struct. 49 1665
[56] Shodja H M, Ahmadzadeh-Bakhshayesh H and Gutkin M Yu 2012 Int. J. Solids Struct. 49 759
[57] Luo J and Xiao Z M 2009 Int. J. Eng Sci. 47 883
[58] Muskhelishvili N L 1975 Some Basic Problems of Mamatical Theory of Elasticity (Groningen: Noordhoff International Publishing) pp. 64–118
[59] Liu Y W, Fang Q H and Jiang C P 2006 Phys. Status Solidi A 23 443
[60] Fang Q H, Liu Y W, Liu Y and Huang B Y 2008 Mater. Lett. 62 3521
[61] Sharma P, Ganti S and Bhate N 2003 Appl. Phys. Lett. 82 535
[62] Fang Q H, Li B and Liu Y W 2007 Phys. Status Solidi B 244 2576
[63] England A H 1971 Complex Variable Method in Elasticity (New York: Wiley-Interscience) pp. 110–125
[64] Xiao Z M, Yan J and Chen B J 2004 Acta Mech. 172 237
[65] Zhang J F 2002 Chin. Phys. 11 651
[66] Fang Q H, Liu Y W and Wen P H 2008 J. Appl. Mech. 75 041019
[67] Ruud J A, Witvrouw A and Spaepen F 1993 J. Appl. Phys. 74 2517
[1] Elastic behaviour of a wedge disclination dipole near a sharp crack emanating from a semi-elliptical blunt crack
Song Hao-Peng(宋豪鹏), Fang Qi-Hong(方棋洪), and Liu You-Wen (刘又文). Chin. Phys. B, 2010, 19(5): 056102.
[2] The solution of a wedge disclination dipole interacting with an annular inclusion and the force acting on the disclination dipole
Song Hao-Peng (宋豪鹏), Fang Qi-Hong (方棋洪), Liu You-Wen (刘又文). Chin. Phys. B, 2008, 17(12): 4592-4598.
No Suggested Reading articles found!