Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 124101    DOI: 10.1088/1674-1056/23/12/124101
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Backscattering from small-scale breaking wave turbulence structure generated by FLUENT

Luo Gen (罗根), Zhang Min (张民)
School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China
Abstract  A breaking wave can exert a great influence on the electromagnetic (EM) scattering result from sea surfaces. In this paper, the process of small-scale wave breaking is simulated by the commercial computational fluid dynamics (CFD) software FLUENT, and the backscattering radar cross section (RCS) of the turbulence structure after breaking is calculated with the method of moments. The scattering results can reflect the turbulent intensities of the wave profiles and can indicate high polarization ratios at moderate incident angles, which should be attributed to the incoherent backscatter from surface disturbance of turbulence structure. Compared with the wave profile before breaking, the turbulence structure has no obvious geometrical characteristic of a plunging breaker, and no sea spikes are present at large incident angles either. In summary, the study of EM scattering from turbulence structure can provide a basis to explain the anomalies of EM scattering from sea surfaces and help us understand the scattering mechanism about the breaking wave more completely.
Keywords:  FLUENT      turbulence structure      EM scattering      high polarization ratios  
Received:  25 March 2014      Revised:  22 May 2014      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  41.20.-q (Applied classical electromagnetism)  
  47.27.E- (Turbulence simulation and modeling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61372004 and 41306188), the Fundamental Research Funds for the Central Universities, China (Grant No. K 5051207015), and the Foundation of the Science and Technology on Electromagnetic Scattering Laboratory, China (Grant No. HX0113071414).
Corresponding Authors:  Zhang Min     E-mail:  mzhang@mail.xidian.edu.cn

Cite this article: 

Luo Gen (罗根), Zhang Min (张民) Backscattering from small-scale breaking wave turbulence structure generated by FLUENT 2014 Chin. Phys. B 23 124101

[1]Wright J W 1968 IEEE Trans. Anten. Propag. AP-16 217
[2]Mouche A A, Chapron B and Reul N 2007 Waves in Random and Complex Media 17 321
[3]Nie D and Zhang M 2010 Chin. Phys. B 19 074101
[4]Zhang Y D and Wu Z S 2002 Chin. Phys. Lett. 19 666
[5]Liu Y, Frasier S and McIntosh R 1998 IEEE Trans. Anten. Propag. 46 27
[6]Hwang P A, Sletten M A and Toporkov J V 2008 J. Geophys. Res. 113 C02003
[7]Jessup A T, Keller W C and Melville W K 1990 J. Geophys. Res. 95 9679
[8]Jessup A T and Melville W K 1991 J. Geophys. Res. 96 20547
[9]Kalmykov A I and Pustovoytenko V V 1976 J. Geophys. Res. 81 1960
[10]Lyzenga D R, Maffett A L and Shuchman R A 1983 IEEE Trans. Geosci. Remote Sens. GE-21 502
[11]Kudryavtsev V, Hauser D, Caudal G and Chapron B 2003 J. Geophys. Res. 108 FET 2-1
[12]Holliday D, DeRaad L L and St-Cyr G J 1998 IEEE Trans. Anten. Propag. 46 108
[13]West J C 2002 IEEE Trans. Geosci. Remote Sens. 40 523
[14]West J C and Zhao Z Q 2002 IEEE Trans. Geosci. Remote Sens. 40 583
[15]Liu Y, Wei E B, Hong J L and Ge Y 2006 Chin. Phys. 15 2175
[16]Liang Y and Guo L X 2009 Acta Phys. Sin. 58 6158 (in Chinese)
[17]Sambe A N, Sous D, Golay F, Fraunie P and Marcer R 2011 Eur. J. Mech. B: Fluids 30 577
[18]Lubin P, Glockner S, Kimmoun O and Branger H 2011 Eur. J. Mech. B: Fluids 30 552
[19]Lakehal D and Liovic P 2011 J. Fluid Mech. 674 522
[20]Fujimura A, Soloviev A and Kudryavtsev V 2010 IEEE Geosci. Remote Sens. Lett. 7 646
[21]2006 Fluent User's Guide (Fluent Inc. Lebanon NH)
[22]Toporkov J V, Marchand R T and Brown G S 1998 IEEE Trans. Anten. Propag. 46 150
[23]An Y Y, Wang D X and Chen R S 2013 Electromagnetics 33 10
[24]An Y Y and Chen R S 2012 Appl. Comput. Electromag. 27 541
[25]Tsang L, Kong J A and Ding K H 2001 Scattering of Electromagnetic Waves (New York: John Wiley & Sons Inc.) p. 119
[26]Toporkov J V and Brown G S 2002 IEEE Trans. Anten. Propag. 50 417
[27]Ericson E A, Lyzenga D R and Walker D T 1999 J. Geophys. Res. 104 29679
[28]Walker D T, Lyzenga D R, Ericson E A and Lund D E 1996 Proc. R. Soc. London, Ser. A 452 1953
[1] An extended improved global structure model for influential node identification in complex networks
Jing-Cheng Zhu(朱敬成) and Lun-Wen Wang(王伦文). Chin. Phys. B, 2022, 31(6): 068904.
[2] A novel method for identifying influential nodes in complex networks based on gravity model
Yuan Jiang(蒋沅), Song-Qing Yang(杨松青), Yu-Wei Yan(严玉为),Tian-Chi Tong(童天驰), and Ji-Yang Dai(代冀阳). Chin. Phys. B, 2022, 31(5): 058903.
[3] Exact solutions of the Schrödinger equation for a class of hyperbolic potential well
Xiao-Hua Wang(王晓华), Chang-Yuan Chen(陈昌远), Yuan You(尤源), Fa-Lin Lu(陆法林), Dong-Sheng Sun(孙东升), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(4): 040301.
[4] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[5] Detection of influential nodes with multi-scale information
Jing-En Wang(王静恩), San-Yang Liu(刘三阳), Ahmed Aljmiai, and Yi-Guang Bai(白艺光). Chin. Phys. B, 2021, 30(8): 088902.
[6] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[7] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[8] Identifying influential nodes based on graph signal processing in complex networks
Zhao Jia (赵佳), Yu Li (喻莉), Li Jing-Ru (李静茹), Zhou Peng (周鹏). Chin. Phys. B, 2015, 24(5): 058904.
[9] Effect of an axial magnetic field on a DC argon arc
Li Lin-Cun(黎林村) and Xia Wei-Dong (夏维东). Chin. Phys. B, 2008, 17(2): 649-654.
[10] The calculating formula for radial matrix elements of a relativistic harmonic oscillator
Qiang Wen-Chao (强稳朝). Chin. Phys. B, 2003, 12(8): 831-835.
No Suggested Reading articles found!