Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 018901    DOI: 10.1088/1674-1056/23/1/018901
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A local-world evolving hypernetwork model

Yang Guang-Yong (杨光勇), Liu Jian-Guo (刘建国)
Research Center of Complex Systems Science, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract  Complex hypernetworks are ubiquitous in the real system. It is very important to investigate the evolution mechanisms. In this paper, we present a local-world evolving hypernetwork model by taking into account the hyperedge growth and local-world hyperedge preferential attachment mechanisms. At each time step, a newly added hyperedge encircles a new coming node and a number of nodes from a randomly selected local world. The number of the selected nodes from the local world obeys the uniform distribution and its mean value is m. The analytical and simulation results show that the hyperdegree approximately obeys the power-law form and the exponent of hyperdegree distribution is γ=2+1/m. Furthermore, we numerically investigate the node degree, hyperedge degree, clustering coefficient, as well as the average distance, and find that the hypernetwork model shares the scale-free and small-world properties, which shed some light for deeply understanding the evolution mechanism of the real systems.
Keywords:  local-world evolving hypernetwork model      power-law form      small-world property  
Received:  28 May 2013      Revised:  30 July 2013      Accepted manuscript online: 
PACS:  89.75.Hc (Networks and genealogical trees)  
  89.65.Ef (Social organizations; anthropology ?)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 71071098, 91024026, and 71171136). Liu Jian-Guo is supported by the Shanghai Rising-Star Program, China (Grant No. 11QA1404500), and the Leading Academic Discipline Project of Shanghai City, China (Grant No. XTKX2012).
Corresponding Authors:  Liu Jian-Guo     E-mail:  liujg004@ustc.edu.cn

Cite this article: 

Yang Guang-Yong (杨光勇), Liu Jian-Guo (刘建国) A local-world evolving hypernetwork model 2014 Chin. Phys. B 23 018901

[1] Watts D J and Strogatz S H 1998 Nature 393 440
[2] Newman M E J 2010 Networks: An Introduction (New York: Oxford University Press)
[3] Barabási A L 2013 Phil. Trans. R. Soc. A 371 20120375
[4] Newman M E J 2001 Proc. Natl. Acad. Sci. 98 404
[5] Newman M E J 2001 Phys. Rev. E 64 016131
[6] Newman M E J 2001 Phys. Rev. E 64 016132
[7] Goldstein M L, Morris S A and Yen G G 2005 Phys. Rev. E 71 026108
[8] Zhou T, Kuscsik Z, Liu J G, Medo M, Wakeling J R and Zhang Y C 2010 Proc. Natl. Acad. Sci. 107 4511
[9] Bollobás B 1982 Graph Theory (North-Holland Publishing Company)
[10] Zhang P P, He Y, Zhou T, Su B B, Chang H, Zhou Y P, Wang B H and He D R 2006 Acta Phys. Sin. 55 60 (in Chinese)
[11] Zhao Q G, Kong X X and Hou Z T 2009 Acta Phys. Sin. 58 6682 (in Chinese)
[12] Yan X Y and Wang M S 2010 Acta Phys. Sin. 59 851 (in Chinese)
[13] Beguerisse Díaz M, Porter M A and Onnela J P 2010 Chaos 20 043101
[14] Mitrović M and Tadić B 2012 Physica A 391 5264
[15] Estrada E and Rodríguez-Velázquez J A 2006 Physica A 364 581
[16] Wang J W, Rong L L, Deng Q H and Zhang J Y 2010 Eur. Phys. J. B 77 493
[17] Hu F, Zhao H X and Ma X J 2013 Sci. Sin.-Phys. Mech. Astron. 43 1
[18] Li X and Chen G R 2003 Physica A 328 274
[19] Qin S and Dai G Z 2009 Chin. Phys. B 18 383
[20] Berge C 1973 Graphs and Hypergraphs (North-Holland Publishing Company)
[21] Berge C 1989 Hypergraphs: Combinatorics of Finite Sets (North-Holland Publishing Company)
[22] Dunbar R 1992 J. Hum. Evol. 22 469
[23] Dunbar R 1998 J. Hum. Evol. 28 287
[24] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[25] Liu J G, Dang Y Z and Wang Z T 2006 Physica A 366 578
[26] Shen Y, Pei W J, Wang K and Wang S P 2009 Chin. Phys. B 18 3783
[27] Barabási A L and Albert R 1999 Science 286 509
[28] Watts D J 1999 Small Worlds: The Dynamics of Networks between Order and Randomness (Princeton: Princeton University Press)
[29] Ramasco J J, Dorogovtsev S N and Pastor-Satorras R 2004 Phys. Rev. E 70 036106
[30] Zhou T, Wang B H, Jin Y D, He D R, Zhang P P, He Y, Su B B, Chen K, Zhang Z Z and Liu J G 2007 Int. J. Mod. Phys. C 18 297
[31] Menczer F 2004 Proc. Natl. Acad. Sci. USA 101 5261
[32] Cheng X Q, Ren F X, Zhou S and Hu M B 2009 New J. Phys. 11 033019
[33] Ren F X, Shen H W and Cheng X Q 2012 Physica A 391 3533
[34] Wang L N, Guo J L, Yang H X and Zhou T 2009 Physica A 388 1713
[1] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[2] Effects of heterogeneous adoption thresholds on contact-limited social contagions
Dan-Dan Zhao(赵丹丹), Wang-Xin Peng(彭王鑫), Hao Peng(彭浩), and Wei Wang(王伟). Chin. Phys. B, 2022, 31(6): 068906.
[3] A novel similarity measure for mining missing links in long-path networks
Yijun Ran(冉义军), Tianyu Liu(刘天宇), Tao Jia(贾韬), and Xiao-Ke Xu(许小可). Chin. Phys. B, 2022, 31(6): 068902.
[4] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
[5] Cascading failures of overload behaviors using a new coupled network model between edges
Yu-Wei Yan(严玉为), Yuan Jiang(蒋沅), Rong-Bin Yu(余荣斌), Song-Qing Yang(杨松青), and Cheng Hong(洪成). Chin. Phys. B, 2022, 31(1): 018901.
[6] Evolution mechanism of Weibo top news competition
Fuzhong Nian(年福忠), Jingzhou Li(李经洲), and Xin Guo(郭鑫). Chin. Phys. B, 2021, 30(12): 128901.
[7] Identification of unstable individuals in dynamic networks
Dongli Duan(段东立), Tao Chai(柴涛), Xixi Wu(武茜茜), Chengxing Wu(吴成星), Shubin Si(司书宾), and Genqing Bian(边根庆). Chin. Phys. B, 2021, 30(9): 090501.
[8] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[9] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[10] Contagion dynamics on adaptive multiplex networks with awareness-dependent rewiring
Xiao-Long Peng(彭小龙) and Yi-Dan Zhang(张译丹). Chin. Phys. B, 2021, 30(5): 058901.
[11] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[12] Modularity-based representation learning for networks
Jialin He(何嘉林), Dongmei Li(李冬梅), and Yuexi Liu(刘阅希). Chin. Phys. B, 2020, 29(12): 128901.
[13] Shortest path of temporal networks: An information spreading-based approach
Yixin Ma(马一心), Xiaoyu Xue(薛潇雨), Meng Cai(蔡萌), and Wei Wang(王伟). Chin. Phys. B, 2020, 29(12): 128902.
[14] Finite density scaling laws of condensation phase transition in zero-range processes on scale-free networks
Guifeng Su(苏桂锋), Xiaowen Li(李晓温), Xiaobing Zhang(张小兵), Yi Zhang(张一). Chin. Phys. B, 2020, 29(8): 088904.
[15] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
No Suggested Reading articles found!