Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 059801    DOI: 10.1088/1674-1056/22/5/059801
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev  

Inflationary dynamics in the braneworld scenarios

Zhang Kai-Yuan (张开源), Wu Pu-Xun (吴普训), Yu Hong-Wei (余洪伟)
Center of Nonlinear Science and Department of Physics, Ningbo University, Ningbo 315211, China
Abstract  We analyze the attractor behaviour of the inflation field in braneworld scenarios using the Hamilton-Jacobi formalism, where the Friedmann equation has the form of H2=ρ+ε2ρ0ρ or H2=ρ+ερ2/2σ, with ε=±1. We find that in all models the linear homogeneous perturbation can decay exponentially as the scalar field rolls down its potential. However, in the case of a -ρ2 correction to the standard cosmology with ρ < σ, the existence of an attractor solution requires (σ-ρ)/φ2 > 1. Our results show that the perturbation decays more quickly in models with positive-energy correction than in the standard cosmology, which is opposite to the case of negative-energy correction. Thus, the positive-energy modification rather than the negative one can assist the inflation and widen the range of initial conditions.
Keywords:  inflation      braneworld      attractor  
Received:  08 September 2012      Revised:  14 October 2012      Accepted manuscript online: 
PACS:  98.80.-k (Cosmology)  
  04.50.-h (Higher-dimensional gravity and other theories of gravity)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10935013, 11175093, 11222545, and 11075083), the Natural Science Foundation of Zhejiang Province of China (Grant Nos. Z6100077 and R6110518), the FANEDD (Grant No. 200922), the National Basic Research Program of China (Grant No. 2010CB832803), and K. C. Wong Magna Fund in Ningbo University of China.
Corresponding Authors:  Wu Pu-Xun     E-mail:  wpx0227@gmail.com

Cite this article: 

Zhang Kai-Yuan (张开源), Wu Pu-Xun (吴普训), Yu Hong-Wei (余洪伟) Inflationary dynamics in the braneworld scenarios 2013 Chin. Phys. B 22 059801

[1] Goldwirth D S 1990 Phys. Lett. B 243 41
[2] Guo Z, Piao Y, Cai R and Zhang Y 2003 Phys. Rev. D 68 043508
[3] Jing H E, Fu M H and Wu Y B 2008 Chin. Phys. Lett. 25 347
[4] Randall L and Sundrum R 1999 Phys. Rev. Lett. 83 3370
[5] Randall L and Sundrum R 1999 Phys. Rev. Lett. 83 4690
[6] Maartens R, Wands D, Bassett B A and Heard I P C 2010 Phys. Rev. D 62 041301
[7] Guo Z, Zhang H and Zhang Y 2004 Phys. Rev. D 69 063502
[8] Shtanov Y and Sahni V 2003 Phys. Lett. B 557 1
[9] Bojowald M 2005 Living Rev. Rel. 8 11
[10] Ashtekar A 2006 AIP Conf. Proc. 861 3
[11] Zhang X and Ling Y 2007 J. Cosmol. Astropart. Phys. 0708 012
[12] Stoica O C 2012 arXiv:1112.4508 [gr-qc]
[13] Stoica O C 2012 arXiv:1207.5303 [gr-qc]
[14] Stoica O C 2012 Commun. Theor. Phys. 58 613
[15] Dvali D, Gabadadze G and Porrati M 2000 Phys. Lett. B 485 208
[16] Maeda K, Mizuno S and Torii T 2003 Phys. Rev. D 68 024033
[17] Deffayet C 2001 Phys. Lett. B 502 199
[18] Ji S Y, Li F Q and Tao B 2004 Chin. Phys. 13 1830
[19] Cai R and Zhang H 2004 J. Cosmol. Astropart. Phys. 08 017
[20] Papantonopoulos E and Zamarias V 2004 J. Cosmol. Astropart. Phys. 10 001
[21] Zhang K, Wu P and Yu H 2010 Phys. Lett. B 690 229
[22] Zhang K, Wu P and Yu H 2012 Phys. Rev. D 85 043521
[23] Salopek D S and Bond J R 1990 Phys. Rev. D 42 3936
[24] Muslimov A G 1990 Class. Quantum Grav. 7 231
[25] Lidsey J E 1991 Phys. Lett. B 273 42
[26] Liddle A R, Parsons P and Barrow J D 1994 Phys. Rev. D 50 7222
[27] Bouhmadi-Lopez M, Maartens R and Wands D 2004 Phys. Rev. D 70 123519
[28] Zhang H and Zhu Z 2006 Phys. Lett. B 641 405
[29] Li F, Ji S and Tao B 2004 Chin. Phys. 13 1380
[30] Lü J B, Wu Y B, Xu L X and Wang Y T 2011 Chin. Phys. B 20 079801
[1] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[2] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[3] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[4] A class of two-dimensional rational maps with self-excited and hidden attractors
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超),Hai-Bo Jiang(姜海波), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(3): 030503.
[5] Extremely hidden multi-stability in a class of two-dimensional maps with a cosine memristor
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超), Hai-Bo Jiang(姜海波), Wei-Peng Lyu(吕伟鹏), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(10): 100503.
[6] Generating multi-layer nested chaotic attractor and its FPGA implementation
Xuenan Peng(彭雪楠), Yicheng Zeng(曾以成), Mengjiao Wang(王梦蛟), and Zhijun Li(李志军). Chin. Phys. B, 2021, 30(6): 060509.
[7] Analysis and implementation of new fractional-order multi-scroll hidden attractors
Li Cui(崔力), Wen-Hui Luo(雒文辉), and Qing-Li Ou(欧青立). Chin. Phys. B, 2021, 30(2): 020501.
[8] Embedding any desired number of coexisting attractors in memristive system
Chunbiao Li(李春彪), Ran Wang(王然), Xu Ma(马旭), Yicheng Jiang(姜易成), and Zuohua Liu(刘作华). Chin. Phys. B, 2021, 30(12): 120511.
[9] A memristive map with coexisting chaos and hyperchaos
Sixiao Kong(孔思晓), Chunbiao Li(李春彪), Shaobo He(贺少波), Serdar Çiçek, and Qiang Lai(赖强). Chin. Phys. B, 2021, 30(11): 110502.
[10] Design and multistability analysis of five-value memristor-based chaotic system with hidden attractors
Li-Lian Huang(黄丽莲), Shuai Liu(刘帅), Jian-Hong Xiang(项建弘), and Lin-Yu Wang(王霖郁). Chin. Phys. B, 2021, 30(10): 100506.
[11] A novel class of two-dimensional chaotic maps with infinitely many coexisting attractors
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超), Hai-Bo Jiang(姜海波), Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2020, 29(6): 060501.
[12] Multistability and coexisting transient chaos in a simple memcapacitive system
Fu-Ping Wang(王富平), Fa-Qiang Wang(王发强). Chin. Phys. B, 2020, 29(5): 058502.
[13] Hidden attractors in a new fractional-order discrete system: Chaos, complexity, entropy, and control
Adel Ouannas, Amina Aicha Khennaoui, Shaher Momani, Viet-Thanh Pham, Reyad El-Khazali. Chin. Phys. B, 2020, 29(5): 050504.
[14] Dynamics of the two-SBT-memristor-based chaotic circuit
Mei Guo(郭梅), Meng Zhang(张萌), Ming-Long Dou(窦明龙), Gang Dou(窦刚), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2020, 29(11): 110505.
[15] Novel two-directional grid multi-scroll chaotic attractors based on the Jerk system
Peng-Fei Ding(丁鹏飞), Xiao-Yi Feng(冯晓毅)†, and Cheng-Mao Wu(吴成茂). Chin. Phys. B, 2020, 29(10): 108202.
No Suggested Reading articles found!