CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
The subwavelength tuned magneto-optical Kerr effect in L10-FePt films with perpendicular magnetic anisotropy |
Zhang Xia (张霞)a, Shi Lei (石磊)b, Li Jing (李晶)c, Xia Yun-Jie (夏云杰)a, Shi Zhong (时钟)d, Zhou Shi-Ming (周仕明)d |
a Shandong Province Key Laboratory of Laser Polarization and Information, Qufu Normal University, Qufu 273165, China;
b Surface Physics State Laboratory and Department of Physics, Fudan University, Shanghai 200433, China;
c Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China;
d School of Physics Science and Technology, Tongji University, Shanghai 200092, China |
|
|
Abstract For L10-FePt films with strong perpendicular anisotropy covered by arrays of hexagonal close-packed polystyrene spheres (PSSs), fine structures are observed in magneto-optical Kerr rotation spectra in the visible spectral range. The reflection minima are found to be located at the same wavelengths as the Kerr rotation peaks. The Kerr rotation enhancement is attributed to the excitation of both the surface plasmon polariton in the dielectric PSS/metal interface and the guide waves (guide mode) in the PSS array. The two-dimensional PSSs/SiO2/FePt system exhibiting a tunable magneto-optical Kerr effect and a high perpendicular magnetic anisotropy will be helpful for designing and fabricating magneto-optics devices.
|
Received: 10 March 2013
Revised: 27 May 2013
Accepted manuscript online:
|
PACS:
|
78.20.Ls
|
(Magneto-optical effects)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
75.70.-i
|
(Magnetic properties of thin films, surfaces, and interfaces)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51171129) and the Shanghai Committee of Science and Technology, China (Grant No. 11JC1412700). |
Corresponding Authors:
Shi Zhong
E-mail: shizhong@tongji.edu.cn
|
Cite this article:
Zhang Xia (张霞), Shi Lei (石磊), Li Jing (李晶), Xia Yun-Jie (夏云杰), Shi Zhong (时钟), Zhou Shi-Ming (周仕明) The subwavelength tuned magneto-optical Kerr effect in L10-FePt films with perpendicular magnetic anisotropy 2013 Chin. Phys. B 22 117803
|
[1] |
Hashimoto S, Matsuda H and Ochiai Y 1990 Appl. Phys. Lett. 56 1069
|
[2] |
Pištora J, Yamaguchi T, Foldyna M, Mistrík J, Postavaa K and Aoyama M 2001 Sensors and Actuators A 110 87
|
[3] |
Wang Z and Fan S H 2005 Opt. Lett. 30 1989
|
[4] |
Wohlfarth E P and Buschow K H J 1990 Handbook of Magnetic Materials Vol. 5 (Holland: Elsevier)
|
[5] |
Lairson B M and Clemens B M 1993 Appl. Phys. Lett. 63 1438
|
[6] |
Cebollada A and Weller D 1994 Phys. Rev. B 50 3419
|
[7] |
Yamaguchi M, Kusakabe T, Kyuno K and Asano S 1999 Physica B 270 17
|
[8] |
Zhou S M, Zhai H R, Song J T, Zhang H Y, Lu M and Jiang S L 1992 Chin. Phys. Lett. 9 379
|
[9] |
Oppeneer P M 1998 J. Magn. Magn. Mater. 188 275
|
[10] |
Reim W, Hüsser O E, Schoenes J, Kaldis E, Wachter P and Seiler K 1984 J. Appl. Phys. 55 2155
|
[11] |
Feil H and Haas C 1987 Phys. Rev. Lett. 58 65
|
[12] |
De A and Puri A 1984 J. Appl. Phys. 92 5401
|
[13] |
Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
|
[14] |
Pendry J B, Martín-Moreno L and Garcia-Vidal F J 2004 Science 305 847
|
[15] |
Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
|
[16] |
González-Díaz J B, García-Martín A, Armelles G, García-Martín J M, Clavero C, Cebollada A, Lukaszew R A, Skuza J R, Kumah D P and Clarke R 2007 Phys. Rev. B 76 153402
|
[17] |
Khanikaev A B, Mousavi S H, Shvets G and Kivshar Y S 2010 Phys. Rev. Lett. 105 126804
|
[18] |
Temnov V V, Armelles G, Woggon U, Guzatov D, Cebollada A, Garcia-Martin A, Garcia-Martin J M, Thomay T, Leitenstorfer A and Bratschitsch R 2010 Nat. Photonics 4 107
|
[19] |
Martín-Becerra D, González-Díaz J B, Temnov V V, Cebollada A, Armelles G, Thomay T, Leitenstorfer A, Bratschitsch R, García-Martín A and González M U 2010 Appl. Phys. Lett. 97 183114
|
[20] |
Clavero C, Yang K, Skuza J R and Lukaszew R A 2010 Opt. Lett. 18 7743
|
[21] |
Belotelov V I, Akinov I A, Pohl M, Kotov V A, Kasture S, Vengurlekar A S, Gopal A V, Yakovlev D R, Zvezdin A K and Bayer M 2011 Nat. Nanotechnol. 6 370
|
[22] |
Ctistis G, Papaioannou E,Patoka P, Gutek J, Fumagalli P and Giersig M 2009 Nano Lett. 9 1
|
[23] |
Torrado J F, González-Díaz J B, González M U, García-Martín A and Armelles G 2010 Opt. Express 18 15635
|
[24] |
Shi L, Liu X H, Yin H W and Zi J 2010 Phys. Lett. A 374 1059
|
[25] |
Zhang X, Shi L, Li J, Xia Y J, Shi Z, Zi J and Zhou S M 2012 J. Phys. D: Appl. Phys. 45 405002
|
[26] |
Hu X S, Shin K W, Rafailovich M, Sokolov J, Stein R, Chan Y, Williams K, Wu K L and Kolb R 2000 High Perform. Polym. 12 621
|
[27] |
Fumagalli P, Spaethand C and Tudiger U 1995 IEEE Trans. Magn. 31 3319
|
[28] |
Sepúlveda B, Calle A, Lechuga L M and Armelles G 2006 Opt. Lett. 31 1085
|
[29] |
Hauser H, Hochreiter J, Stangl G, Chabicovsky R, Janiba M and Riedling K 2000 J. Magn. Magn. Mater. 215–216 788
|
[30] |
Klank M, Hagedorn O, Shamonin M and Dotsch H 2002 J. Appl. Phys. 92 6484
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|