Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 100503    DOI: 10.1088/1674-1056/22/10/100503
GENERAL Prev   Next  

Synchronization for complex dynamical Lurie networks

Zhang Xiao-Jiao (张晓娇)a b, Cui Bao-Tong (崔宝同)a b
a Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, Wuxi 214122, China;
b School of IoT Engineering, Jiangnan University, Wuxi 214122, China
Abstract  This paper investigates the synchronization problem for two different complex dynamical Lurie networks. The first one is with constant coupling and the second one is with constant coupling and discrete-delay coupling. Based on contraction theory and matrix measure properties, some new delay-independent synchronization conditions depending on coupling strength and network topology are proposed. Finally, simulation results are presented to support the theoretical results.
Keywords:  contraction theory      virtual system      partial contraction      uniformly negative definite      hybrid coupling  
Received:  31 October 2012      Revised:  20 March 2013      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Jn (High-dimensional chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61174021 and 61104155), the Fundamental Research Funds for the Central Universities (Grant No. JUDCF12033), the Jiangsu Innovation Program for Graduates (Grant No. CXZZ12_0742), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Fundamental Research Funds for the Central Universities (Grant No. JUSRP51322B), and the 111 Project (Grant No. B12018).
Corresponding Authors:  Zhang Xiao-Jiao     E-mail:  xiaojiao-abc@hotmail.com

Cite this article: 

Zhang Xiao-Jiao (张晓娇), Cui Bao-Tong (崔宝同) Synchronization for complex dynamical Lurie networks 2013 Chin. Phys. B 22 100503

[1] Lü L, Zhang Q L and Guo Z A 2008 Chin. Phys. B 17 498
[2] Chai Y, Lü L and Chen L Q 2012 Chin. Phys. B 21 030506
[3] Li Z and Han C Z 2002 Chin. Phys. 11 9
[4] Guan X P and Hua C C 2002 Chin. Phys. Lett. 19 1031
[5] Chen S H, Liu J, Feng J W and Lü J H 2002 Chin. Phys. Lett. 19 1257
[6] Li L X, Peng H P, Lu H B and Guan X P 2001 Chin. Phys. 10 796
[7] Zhang J S, Wan J H and Xiao X C 2001 Chin. Phys 10 97
[8] DeLellis P, Bernardo M D, Gorochowski T E and Russo G 2010 IEEE Circ. Syst. Mag. 10 64
[9] Arenas A, Guilera A D, Kurths J, Moreno Y and Zhou C S 2008 Phys. Rep. 469 93
[10] Cao J D, Chen G R and Li P 2008 IEEE Trans. Syst. Man Cybern. Part B 38 488
[11] Slotine J J E and Wang W 2005 Cooperative Control (Berlin/Herdelberg: Springer-Verlag), pp. 207-213
[12] Wang W and Slotine J J E 2005 Biol. Cybern 92 38
[13] Wang X F 2002 Int. J. Bifur. Chaos 12 885
[14] Xu S Y and Yang Y 2009 Commun. Nonlinear Sci. Numer. Simul. 14 3230
[15] Suykens J A K, Curran P F and Chua L O 1999 IEEE Trans. Circ. Syst. I: Fundamental Theory and Applications 46 841
[16] He H L, Tu J J and Xiong P 2011 J. Franklin Inst. 348 2257
[17] Liu X, Gao Q and Niu L Y 2010 Nonlinear Dyn. 59 297
[18] Li T, Song A, Fei S and Wang T 2011 Commun. Nonlinear Sci. Numer. Simul. 16 10
[19] Wang T, Li T, Yang X and Fei S M 2012 Neurocomputing 83 72
[20] Li Z K, Duan Z S and Huang L 2007 Proceedings of the 26th Chinese Control Conference, July 26-31, 2007, Zhangjiajie, China, p. 304
[21] Li Z K, Duan Z S and Chen G R 2011 Int. J. Control 84 216
[22] Lohmiller W and Slotine J J E 1998 Automatica 34 683
[23] Sharma B B and Kar I N 2011 Nonlinear Dyn. 63 429
[24] Zhang Y P and Sun J T 2004 Phys. Lett. A 330 442
[25] Li C B, He Y and W A G 2012 Advances in Automation and Robotics 1 (Berlin/Herdelberg: Springer-verlag), pp. 207-213
[26] Hmamed A 1991 Int. J. Syst. Sci. 22 605
[27] Coppel W A 1965 Stability and Asymptotic Behavior of Differential Equations (Boston: D. C. Heath and Company), p. 59
[28] Desoer C A and Vidyasagar M 1975 Feedbacksystems: Input-Output Properties (New York: Academic Press), p. 31
[1] Leaderless and leader-following consensus of linear multi-agent systems
Zhang Xiao-Jiao (张晓娇), Cui Bao-Tong (崔宝同), Lou Ke (娄柯). Chin. Phys. B, 2014, 23(11): 110205.
[2] Synchronization of stochastically hybrid coupled neural networks with coupling discrete and distributed time-varying delays
Tang Yang (唐漾), Zhong Hui-Huang(钟恢凰), Fang Jian-An(方建安). Chin. Phys. B, 2008, 17(11): 4080-4090.
No Suggested Reading articles found!