Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 018903    DOI: 10.1088/1674-1056/22/1/018903
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Rank-based deactivation model for networks with age

Wang Xue-Wen (王学文)a, Yang Guo-Hong (杨国宏)a, Li Xiao-Lin (李小林)b, Xu Xin-Jian (许新建)b
a Department of Physics, Shanghai University, Shanghai 200444, China;
b Department of Mathematics, Shanghai University, Shanghai 200444, China
Abstract  We study the impact of age on network evolution which couples addition of new nodes and deactivation of old ones. During evolution, each node experiences two stages: active and inactive. The transition from the active state to the inactive one is based on the rank of the node. In this paper, we adopt age as a criterion of ranking, and propose two deactivation models that generalize previous researches. In model A, the older active node possesses the higher rank, whereas in model B, the younger active node takes the higher rank. We make comparative study between the two models through the node-degree distribution.
Keywords:  complex networks      deactivation model      rank  
Received:  29 August 2012      Revised:  26 September 2012      Accepted manuscript online: 
PACS:  89.75.Fb (Structures and organization in complex systems)  
  89.75.Hc (Networks and genealogical trees)  
Fund: Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20093108110004) and the National Natural Science Foundation of China (Grant Nos. 10805033 and 10902065).
Corresponding Authors:  Xu Xin-Jian     E-mail:  xinjxu@shu.edu.cn

Cite this article: 

Wang Xue-Wen (王学文), Yang Guo-Hong (杨国宏), Li Xiao-Lin (李小林), Xu Xin-Jian (许新建) Rank-based deactivation model for networks with age 2013 Chin. Phys. B 22 018903

[1] Albert R and Barabáasi A L 2002 Rev. Mod. Phys. 74 47
[2] Newman M E J 2003 SIAM Rev. 45 167
[3] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175
[4] Dorogovtsev S N, Goltsev A V and Mendes J F F 2008 Rev. Mod. Phys. 80 1275
[5] Watts D J and Strogatz S H 1998 Nature 393 440
[6] Newman M E J and Watts D J 1999 Phys. Lett. A 263 341
[7] Barabási A L and Albert R 1999 Science 286 509
[8] Caldarelli G, Capocci A, Rios P D L and Muńoz M A 2002 Phys. Rev. Lett. 89 258702
[9] Fortunato S 2010 Phys. Rep. 486 75
[10] Dorogovtsev S N and Mendes J F F 2000 Phys. Rev. E 62 1842
[11] Zhu H, Wang X R and Zhu J Y 2003 Phys. Rev. E 68 056121
[12] Hajra K B and Sen P 2004 Phys. Rev. E 70 056103
[13] Herdagdelen A, Aygün E and Bingol H 2007 Europhys. Lett. 78 60007
[14] Lambiotte R 2007 J. Stat. Mech. 2010 P02020
[15] Ren F X, Shen H W and Cheng X Q 2012 Physica A 391 3533
[16] Klemm K and Eguíluz V M 2002 Phys. Rev. E 65 036123
[17] Klemm K and Eguíluz V M 2002 Phys. Rev. E 65 057102
[18] Vázquez A, Boguńá M, Moreno Y, Pastor-Satorras R and Vespignani A 2003 Phys. Rev. E 67 046111
[19] Wu Z X, Xu X J and Wang Y H 2005 Phys. Rev. E 71 066124
[20] Tian L, Zhu C P, Shi D N, Gu Z M and Zhou T 2006 Phys. Rev. E 74 046103
[21] Yu X L, Wu X, Zhang D M, Li Z H, Liang F and Wang X Y 2008 Commun. Theor. Phys. 49 1357
[22] Xu X J and Zhou M C 2009 Phys. Rev. E 80 066105
[23] Crokidakis N and de Menezes M A 2009 J. Stat. Mech. 2009 P04018
[24] Yang R H and Song A G 2009 Int. J. Mod. Phys. C 20 781
[25] Xu X J, Peng X L, Small M and Fu X C 2010 J. Stat. Mech. 2010 P12020
[26] Eom Y H and Fortunato S 2011 PLoS ONE 6 e24926
[27] Xiong F, Liu Y, Zhu J, Zhang Z J, Zhang Y C and Zhang Y 2011 Eur. Phys. J. B 84 115
[28] Fortunato S, Flammini A and Menczer F 2006 Phys. Rev. Lett. 96 218701
[29] Tian L and Shi D N 2007 Eur. Phys. J. B 56 167
[30] Camacho J, Guimerá R and Amaral L A N 2002 Phys. Rev. Lett. 88 228102
[31] Camacho J, Guimerá R and Amaral L A N 2002 Phys. Rev. E 65 030901
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[4] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[5] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[6] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[7] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[8] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[9] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[10] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[11] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[12] Modeling and analysis of the ocean dynamic with Gaussian complex network
Xin Sun(孙鑫), Yongbo Yu(于勇波), Yuting Yang(杨玉婷), Junyu Dong(董军宇)†, Christian B\"ohm, and Xueen Chen(陈学恩). Chin. Phys. B, 2020, 29(10): 108901.
[13] Pyramid scheme model for consumption rebate frauds
Yong Shi(石勇), Bo Li(李博), Wen Long(龙文). Chin. Phys. B, 2019, 28(7): 078901.
[14] Nodes and layers PageRank centrality for multilayer networks
Lai-Shui Lv(吕来水), Kun Zhang(张琨), Ting Zhang(张婷), Meng-Yue Ma(麻孟越). Chin. Phys. B, 2019, 28(2): 020501.
[15] Theoretical analyses of stock correlations affected by subprime crisis and total assets: Network properties and corresponding physical mechanisms
Shi-Zhao Zhu(朱世钊), Yu-Qing Wang(王玉青), Bing-Hong Wang(汪秉宏). Chin. Phys. B, 2019, 28(10): 108901.
No Suggested Reading articles found!