Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 020505    DOI: 10.1088/1674-1056/21/2/020505
GENERAL Prev   Next  

Period-doubling bifurcation in two-stage power factor correction converters using the method of incremental harmonic balance and Floquet theory

Wang Fa-Qiang(王发强), Zhang Hao (张浩), and Ma Xi-Kui(马西奎)
State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  In this paper, period-doubling bifurcation in a two-stage power factor correction converter is analyzed by using the method of incremental harmonic balance (IHB) and Floquet theory. A two-stage power factor correction converter typically employs a cascade configuration of a pre-regulator boost power factor correction converter with average current mode control to achieve a near unity power factor and a tightly regulated post-regulator DC-DC Buck converter with voltage feedback control to regulate the output voltage. Based on the assumption that the tightly regulated post-regulator DC-DC Buck converter is represented as a constant power sink and some other assumptions, the simplified model of the two-stage power factor correction converter is derived and its approximate periodic solution is calculated by the method of IHB. And then, the stability of the system is investigated by using Floquet theory and the stable boundaries are presented on the selected parameter spaces. Finally, some experimental results are given to confirm the effectiveness of the theoretical analysis.
Keywords:  two-stage power factor correction converter      incremental harmonic balance      Floquet theory      period-doubling bifurcation  
Received:  18 July 2011      Revised:  15 September 2011      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  84.30.Jc (Power electronics; power supply circuits)  
  45.10.Hj (Perturbation and fractional calculus methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51007068), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100201120028), the Fundamental Research Funds for the Central Universities of China, and the State Key Laboratory of Electrical Insulation and Power Equipment of China (Grant No. EIPE10303).
Corresponding Authors:  Wang Fa-Qiang,faqwang@mail.xjtu.edu.cn     E-mail:  faqwang@mail.xjtu.edu.cn

Cite this article: 

Wang Fa-Qiang(王发强), Zhang Hao (张浩), and Ma Xi-Kui(马西奎) Period-doubling bifurcation in two-stage power factor correction converters using the method of incremental harmonic balance and Floquet theory 2012 Chin. Phys. B 21 020505

[1] Tse C K 2003 Int. J. Circ. Theor. Appl. 31 157
[2] Ki S K, Cheng D K W and Lu D D C 2008 IET Power Electron. 1 72
[3] Ren H P, Liu D 2005 Chin. Phys. 14 1352
[4] Wang F Q, Zhang H, Ma X K and Li X M 2009 Acta Phys. Sin. 58 6838 (In Chinese)
[5] Rustom K and Batarseh I 2003 IEEE Int. Conf. Industr. Technol. December 10-12, 2003, Maribor, Slovenia, Vol. 2, pp. 1089-1095
[6] Lee K Y and Lai Y S 2009 IET Power Electron. 2 625
[7] Neba Y, Ishizaka K and Itoh R 2010 IET Power Electron. 3 176
[8] Dranga O, Tse C K, Iu H H C and Nagy I 2003 Int. J. Bifur. Chaos 13 3107
[9] EI Aroudi A, Martinez-Salamero L, Orabi M and Ninomiya T 2005 IEEE Int. Symposium Circ. Sys. May 23-26, 2005, Kobe, Japan, Vol. 3, pp. 2835-2838
[10] Zhang H, Ma X K, Xue B L and Liu W Z 2005 Chaos, Solitons and Fractals 23 431
[11] Iu H H C, Zhou Y F and Tse C K 2003 Int. J. Circ. Theor. Appl. 31 611
[12] Orabi M and Ninomiya T 2003 IEEE Trans. Ind. Electron. 50 1116
[13] Mazumder S K, Nayfeh A H and Boroyevich D 2003 IEEE Trans. Power Electron. 18 1063
[14] Wong S C, Tse C K, Orabi M and Ninomiya T 2006 IEEE Trans. Cir. Sys.-I 53 454
[15] EI Aroudi A, Orabi M and Martinez-salamero L 2008 Int. J. Bifur. Chaos 18 3073
[16] Wu X Q, Tse C K, Dranga O and Lu J N 2006 IEEE Trans. Circ. Sys.-I 53 204
[17] Dai D, Li S N, Ma X K and Tse C K 2007 IEEE Trans. Circ. Sys.-I 54 1724
[18] Orabi M and Ninomiya T 2004 IEICE Trans. Commun. E 87-B 3506
[19] Dranga O, Chu G, Tse C K and Wong S C 2006 Proc. 37th IEEE Power Electron. Spec. Conf. June 18-22, 2006, Jeju, Korea, pp. 594-598
[20] Chu G, Tse C K and Wong S C 2009 IEEE Trans. Power Electron. 24 469
[21] Orabi M, Haroon R and Youssef M 2008 Proc. IEEE Appl. Power Electron. Conf. Exposition February 24-28, 2008, Austin, Texas, USA, pp. 1389-1395
[22] Lau S L and Cheung Y K 1981 ASME J. Appl. Mech. 48 959
[23] Ge Z M and Chen H H 1997 J. Sound Vib. 200 121
[24] Raghothama A and Narayanan S 1999 J. Sound Vib. 226 469
[25] Raghothama A and Narayanan S 2000 Ocean Engineering 27 1087
[26] Xu L, Lu M W and Cao Q 2002 Phys. Lett. A 301 65
[27] Shen J H, Lin K C, Chen S H and Sze K Y 2008 Nonlinear Dyn. 52 403
[28] Todd P C 1999 Unitrode Product and Applications Handbook (Austin: Texas Instruments Incorporated) U-134 p. 3-269
[29] Itovich G R and Moiola J L 2006 Chaos, Solitons and Fractals 27 647
[1] Effective Hamiltonian of the Jaynes-Cummings model beyond rotating-wave approximation
Yi-Fan Wang(王伊凡), Hong-Hao Yin(尹洪浩), Ming-Yue Yang(杨明月), An-Chun Ji(纪安春), and Qing Sun(孙青). Chin. Phys. B, 2021, 30(6): 064204.
[2] Photoinduced Weyl semimetal phase and anomalous Hall effect in a three-dimensional topological insulator
Meng-Nan Chen(陈梦南) and Wen-Chao Chen(陈文潮). Chin. Phys. B, 2021, 30(11): 110308.
[3] Complex dynamics analysis of impulsively coupled Duffing oscillators with ring structure
Jiang Hai-Bo (姜海波), Zhang Li-Ping (张丽萍), Yu Jian-Jiang (于建江). Chin. Phys. B, 2015, 24(2): 020502.
[4] Application of Arnoldi method to boundary layer instability
Zhang Yong-Ming (张永明), Luo Ji-Sheng (罗纪生). Chin. Phys. B, 2015, 24(12): 124701.
[5] Determination of the exact range of the value of the parameter corresponding to chaos based on the Silnikov criterion
Li Wei-Yi(李伟义), Zhang Qi-Chang(张琪昌), and Wang Wei(王炜). Chin. Phys. B, 2010, 19(6): 060510.
[6] Stochastic period-doubling bifurcation analysis of a Rössler system with a bounded random parameter
Ni Fei(倪菲), Xu Wei(徐伟), Fang Tong(方同), and Yue Xiao-Le(岳晓乐). Chin. Phys. B, 2010, 19(1): 010510.
[7] Stochastic period-doubling bifurcation in biharmonic driven Duffing system with random parameter
Xu Wei(徐伟), Ma Shao-Juan(马少娟), and Xie Wen-Xian(谢文贤). Chin. Phys. B, 2008, 17(3): 857-864.
[8] Stochastic period-doubling bifurcation analysis of stochastic Bonhoeffer--van der Pol system
Zhang Ying(张莹), Xu Wei(徐伟), Fang Tong(方同), and Xu Xu-Lin(徐旭林). Chin. Phys. B, 2007, 16(7): 1923-1933.
[9] Analysis of stochastic bifurcation and chaos in stochastic Duffing--van der Pol system via Chebyshev polynomial approximation
Ma Shao-Juan (马少娟), Xu Wei (徐伟), Li Wei (李伟), Fang Tong (方同). Chin. Phys. B, 2006, 15(6): 1231-1238.
No Suggested Reading articles found!