Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 020504    DOI: 10.1088/1674-1056/21/2/020504
GENERAL Prev   Next  

A one-time one-key encryption algorithm based on the ergodicity of chaos

Wang Xing-Yuan(王兴元) and Teng Lin(滕琳)
Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
Abstract  In this paper, we propose a new one-time one-key encryption algorithm based on the ergodicity of a skew tent chaotic map. We divide the chaotic trajectory into sub-intervals and map them to integers, and use this scheme to encrypt plaintext and obtain ciphertext. In this algorithm, the plaintext information in the key is used, so different plaintexts or different total numbers of plaintext letters will encrypt different ciphertexts. Simulation results show that the performance and the security of the proposed encryption algorithm can encrypt plaintext effectively and resist various typical attacks.
Keywords:  chaos      encryption      ergodicity  
Received:  04 July 2011      Revised:  11 August 2011      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61173183, 60973152, and 60573172), the Superior University Doctor Subject Special Scientific Research Foundation of China (Grant No. 20070141014), and the Natural Science Foundation of Liaoning Province, China (Grant No. 20082165).
Corresponding Authors:  Wang Xing-Yuan,wangxy@dlut.edu.cn;Teng Lin,tenglin@mail.dlut.edu.cn     E-mail:  wangxy@dlut.edu.cn;tenglin@mail.dlut.edu.cn

Cite this article: 

Wang Xing-Yuan(王兴元) and Teng Lin(滕琳) A one-time one-key encryption algorithm based on the ergodicity of chaos 2012 Chin. Phys. B 21 020504

[1] Wang X Y and Gao Y F 2010 Nonlinear Sci. Numer. Simulat. 15 99
[2] Ashraf A. Z and Abdulnasser A R 2011 Nonlinear Sci. Numer. Simulat. 16 3721
[3] Liu Z B, Zhang H G and Sun Q Y 2010 Chin. Phys. B 19 090506
[4] Zhang H G, Ma T D, Fu J and Tong S C 2009 Chin. Phys. B 18 3742
[5] Zhang H G, Ma T D, Yu W and Fu J 2008 Chin. Phys. B 17 3616
[6] Long M, Peng F and Chen G R 2008 Chin. Phys. B 17 3588
[7] Wang K, Pei W J, Zou L H and He Z Y 2006 Acta Phys. Sin. 55 6243 (in Chinese)
[8] Baptista M S 1998 Phys. Lett. A 240 50
[9] Wong W K, Lee L P and Wong K W 2001 Comput. Phys. Commun. 138 234
[10] Wong K W 2002 Phys. Lett. A 298 238
[11] Wong K W 2003 Phys. Lett. A 307 292
[12] Wong K W, Ho S W and Yung C K 2003 Phys. Lett. A 310 67
[13] Jakimoski G and Kocarev L 2001 Phys. Lett. A 291 381
[14] Wang Y, Liao X F, Xiang T, Wong K W and Yang D G 2007 Phys. Lett. A 363 277
[15] Rhouma R, Solak E, Arroyo D, Li S J, Alvarez G and Belghith S 2009 Phys. Lett. A 373 3398
[16] Kocarev L and Jakimoski G 2001 Phys. Lett. A 289 200
[17] Alvarez G and Li S 2006 Int. J. Bifurc. Chaos 16 2129
[18] Pareek N K, Patidar V and Sud K K 2005 Nonlinear Sci. Numer. Simulat. 10 715
[1] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[2] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[3] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[4] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[5] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[6] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[7] Data encryption based on a 9D complex chaotic system with quaternion for smart grid
Fangfang Zhang(张芳芳), Zhe Huang(黄哲), Lei Kou(寇磊), Yang Li(李扬), Maoyong Cao(曹茂永), and Fengying Ma(马凤英). Chin. Phys. B, 2023, 32(1): 010502.
[8] Bioinspired tactile perception platform with information encryption function
Zhi-Wen Shi(石智文), Zheng-Yu Ren(任征宇), Wei-Sheng Wang(王伟胜), Hui Xiao(肖惠), Yu-Heng Zeng(曾俞衡), and Li-Qiang Zhu(竺立强). Chin. Phys. B, 2022, 31(9): 098506.
[9] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[10] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[11] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[12] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[13] Efficient quantum private comparison protocol utilizing single photons and rotational encryption
Tian-Yi Kou(寇天翊), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(6): 060307.
[14] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[15] Color-image encryption scheme based on channel fusion and spherical diffraction
Jun Wang(王君), Yuan-Xi Zhang(张沅熙), Fan Wang(王凡), Ren-Jie Ni(倪仁杰), and Yu-Heng Hu(胡玉衡). Chin. Phys. B, 2022, 31(3): 034205.
No Suggested Reading articles found!