Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 100201    DOI: 10.1088/1674-1056/22/10/100201
GENERAL   Next  

A diagrammatic categorification of the fermion algebra

Lin Bing-Sheng (林冰生)a, Wang Zhi-Xi (王志玺)b, Wu Ke (吴可)b, Yang Zi-Feng (杨紫峰)b
a Department of Mathematics, South China University of Technology, Guangzhou 510641, China;
b School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
Abstract  In this paper, we study the diagrammatic categorification of the fermion algebra. We construct a graphical category corresponding to the one-dimensional (1D) fermion algebra, and we investigate the properties of this category. The categorical analogues of the Fock states are some kind of 1-morphisms in our category, and the dimension of the vector space of 2-morphisms is exactly the inner product of the corresponding Fock states. All the results in our categorical framework coincide exactly with those in normal quantum mechanics.
Keywords:  categorification      fermion algebra  
Received:  21 March 2013      Revised:  13 April 2013      Accepted manuscript online: 
PACS:  02.10.Hh (Rings and algebras)  
  03.65.Ca (Formalism)  
  03.65.Fd (Algebraic methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10975102, 10871135, 11031005, and 11075014).
Corresponding Authors:  Lin Bing-Sheng     E-mail:  sclbs@scut.edu.cn

Cite this article: 

Lin Bing-Sheng (林冰生), Wang Zhi-Xi (王志玺), Wu Ke (吴可), Yang Zi-Feng (杨紫峰) A diagrammatic categorification of the fermion algebra 2013 Chin. Phys. B 22 100201

[1] Baez J and Dolan J 1998 Contemp. Math. 230 1
[2] Crane L and Frenkel I B 1994 J. Math. Phys. 35 5136
[3] Baez J C and Dolan J 2001 From Finite Sets to Feynman Diagrams in Mathematics Unlimited – 2001 and Beyond, Vol. 1, ed. Engquist B and Schmid W (Berlin: Springer)
[4] Morton J 2006 Theory Appl. Categ. 16 785
[5] Vicary J 2008 Int. J. Theor. Phys. 47 3408
[6] Heunen C, Landsman N P and Spitters B 2009 Comm. Math. Phys. 291 63
[7] Abramsky S and Coecke B 2009 Categorical Quantum Mechanics in Handbook of Quantum Logic and Quantum Structures, Vol. II, ed. Engesser K, Gabbay D M and Lehmann D (Elsevier Science)
[8] Stirling S D and Wu Y S 2009 arXiv: 0909.0988v1 [quant-ph]
[9] Isham C J 2011 Topos Methods in the Foundations of Physics in Deep Beauty, ed. Halvorson H (Cambridge: Cambridge University Press)
[10] Khovanov M 2001 Comm. Algebra 29 5033
[11] Lauda A D 2010 Adv. Math. 225 3327
[12] Khovanov M 2010 arXiv: 1009.3295v1 [math.RT]
[13] Cautis S and Licata A 2012 Duke Math. J. 161 2469
[14] Licata A and Savage A 2013 Quantum Topology 4 125
[15] Wang N et al. 2013 Categorification of fermions (in prepation)
[16] Lauda A D 2012 Bull. Inst. Math. Acad. Sin. 7 165
[17] Lin B S and Wu K 2012 Commun. Theor. Phys. 57 34
[18] Khovanov M, Mazorchuk V and Stroppel C 2009 Theory Appl. Categ. 22 479
[19] Chaichian M, Felipe R G and Montonen C 1993 J. Phys. A: Math. Gen. 26 4017
[20] Cai L Q, Lin B S and Wu K 2012 Chin. Phys. B 21 020201
[1] Cluster algebra structure on the finite dimensional representations of affine quantum group Uq(Â3)
Yang Yan-Min (杨彦敏), Ma Hai-Tao (马海涛), Lin Bing-Sheng (林冰生), Zheng Zhu-Jun (郑驻军). Chin. Phys. B, 2015, 24(1): 010201.
[2] A diagrammatic categorification of q-boson and q-fermion algebras
Cai Li-Qiang(蔡立强), Lin Bing-Sheng(林冰生), and Wu Ke(吴可) . Chin. Phys. B, 2012, 21(2): 020201.
No Suggested Reading articles found!