CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Wet thermal annealing effect on TaN/HfO2/Ge metal–oxide–semiconductor capacitors with and without a GeO2 passivation layer |
Liu Guan-Zhou (刘冠洲), Li Cheng (李成), Lu Chang-Bao (路长宝), Tang Rui-Fan (唐锐钒), Tang Meng-Rao (汤梦饶), Wu Zheng (吴政), Yang Xu (杨旭), Huang Wei (黄巍), Lai Hong-Kai (赖虹凯), Chen Song-Yan (陈松岩 ) |
Department of Physics, Semiconductor Photonics Research Center, Xiamen University, Xiamen 361005, China |
|
|
Abstract Wet thermal annealing effects on the properties of TaN/HfO2/Ge metal-oxide-semiconductor (MOS) structures with and without a GeO2 passivation layer are investigated. The physical and the electrical properties are characterized by X-ray photoemission spectroscopy, high-resolution transmission electron microscopy, capacitance-voltage (C-V) and current-voltage characteristics. It is demonstrated that the wet thermal annealing at relatively higher temperature such as 550 ℃ can lead to Ge incorporation in HfO2 and the partial crystallization of HfO2, which should be responsible for the serious degradation of the electrical characteristics of the TaN/HfO2/Ge MOS capacitors. However, the wet thermal annealing at 400 ℃ can decrease the GeOx interlayer thickness at the HfO2/Ge interface, resulting in a significant reduction of the interface states and a smaller effective oxide thickness, along with the introduction of positive charge in the dielectrics due to the hydrolyzable property of GeOx in the wet ambient. The pre-growth of a thin GeO2 passivation layer can effectively suppress the interface states and improve the C-V characteristics for the as-prepared HfO2 gated Ge MOS capacitors, but it also dissembles the benefits of the wet thermal annealing to a certain extent.
|
Received: 11 May 2012
Revised: 13 July 2012
Accepted manuscript online:
|
PACS:
|
77.55.dj
|
(For nonsilicon electronics (Ge, III-V, II-VI, organic electronics))
|
|
79.60.Bm
|
(Clean metal, semiconductor, and insulator surfaces)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61176092, 61036003, and 60837001), the National Basic Research Program of China (Grant No. 2012CB933503), the Ph.D. Program Foundation of Ministry of Education of China (Grant No. 20110121110025), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2010121056). |
Corresponding Authors:
Li Cheng
E-mail: lich@xmu.edu.cn
|
Cite this article:
Liu Guan-Zhou (刘冠洲), Li Cheng (李成), Lu Chang-Bao (路长宝), Tang Rui-Fan (唐锐钒), Tang Meng-Rao (汤梦饶), Wu Zheng (吴政), Yang Xu (杨旭), Huang Wei (黄巍), Lai Hong-Kai (赖虹凯), Chen Song-Yan (陈松岩 ) Wet thermal annealing effect on TaN/HfO2/Ge metal–oxide–semiconductor capacitors with and without a GeO2 passivation layer 2012 Chin. Phys. B 21 117701
|
[1] |
Claeys C and Simoen E 2007 Germanium Based Technologies: em From Materials to Devices (New York: Elsevier)
|
[2] |
Spiga S, Wiemer C, Tallarida G, Scarel G, Ferrari S, Seguini G and Fanciulli M 2005 Appl. Phys. Lett. 87 112904
|
[3] |
Wu N, Zhang Q C, Chan D S H, Balasubramanian N and Zhu C X 2006 IEEE Transact. Electron. Dev. Lett. 27 479
|
[4] |
He G, Fang Q, Li G H, Zhang J P and Zhang L D 2007 Appl. Surf. Sci. 253 8483
|
[5] |
Wu N, Zhang Q C, Zhu C X, Yeo C C, Whang S J, Chan D S H, Li M F, Cho B J, Chin A, Kwong D L, Du A Y, Tung C H and Balasubramanian N 2004 Appl. Phys. Lett. 84 3741
|
[6] |
Xu J P, Chen W B, Lai P T, Li Y P and Chan C L 2007 Chin. Phys. 16 529
|
[7] |
Xie R L, Phung T H, Yu M B and Zhu C X 2010 IEEE Transact. Electron. Dev. 57 1399
|
[8] |
Xie R L and Zhu C X 2007 IEEE Transact. Electron. Dev. Lett. 28 976
|
[9] |
Ahmet P, Nakagawa K, Kakushima K, Nohira H, Tsutsui K, Sugii N, Hattori T and Iwai H 2008 Microelectron. Reliab. 48 1769
|
[10] |
Houssa M, Pourtois G, Caymax M, Meuris M and Heyns M 2008 Surf. Rev. Lett. 602 L25
|
[11] |
Xu J P, Lai P T, Li C X, Zou X and Chan C L 2006 IEEE Transact. Electron. Dev. Lett. 27 439
|
[12] |
Zou X, Xu J P, Li C X and Lai P T 2007 Appl. Phys. Lett. 90 163502
|
[13] |
Park I, Choi Y, Nichols W T and Ahn J 2011 Appl. Phys. Lett. 98 102905
|
[14] |
Delabie A, Bellenger F, Houssa M, Conard T, Elshocht S V, Caymax M, Heyns M and Meuris M 2007 Appl. Phys. Lett. 91 082904
|
[15] |
Afanas'ev V V, Stesmans A, Delabie A, Bellenger F, Houssa M and Meuris M 2008 Appl. Phys. Lett. 92 022109
|
[16] |
Oniki Y, Koumo H, Iwazaki Y and Ueno T 2010 J. Appl. Phys. 107 124113
|
[17] |
Nishimura T, Lee C H, Wang S K, Tabata T, Kita K, Nagashio K and Toriumi A 2010 VLSI Symp. Tech. Dig. 209
|
[18] |
Liu G Z, Li C, Lai H and Chen S Y 2010 J. Electrochem. Soc. 157 H603
|
[19] |
Kim H, McIntyre P C, Chui C O, Saraswat K C and Cho M H 2004 Appl. Phys. Lett. 85 2902
|
[20] |
Zhang Q C, Wu N, Lai D M Y, Nikolai Y, Bera L K and Zhu C X 2006 J. Electrochem. Soc. 153 G207
|
[21] |
Terman L M 1962 Solid-State Electron. 5 285
|
[22] |
Berkeley Device Group Available: www-device.eecs.berkeley.edu/qmcv/qmcv.htm
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|