|
|
Vibrational spectra and intramolecular vibrational redistribution in methane and its isotopomers |
Hou Xi-Wen (侯喜文)a, Wan Ming-Fang (万明芳)b, Ma Zhong-Qi (马中骐)c |
a Department of Physics, Huazhong Normal University, Wuhan 430079, China; b School of Natural Science, Wuhan University of Technology, Wuhan 430079, China; c Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract An improved U(2) algebraic model is introduced to study the stretching and bending vibrational spectra of methane and its isotopomers. The algebraic model with fewer parameters reproduces the experimental spectra with good precision. Moreover, the obtained parameters describe well the correct behavior of isotopic substitution. It is shown that the Fermi resonance leads to a very fast intramolecular vibrational redistribution among stretches and bends.
|
Received: 24 January 2012
Revised: 12 March 2012
Accepted manuscript online:
|
PACS:
|
33.20.Tp
|
(Vibrational analysis)
|
|
34.30.+h
|
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174099). |
Corresponding Authors:
Hou Xi-Wen
E-mail: xwhou@phy.ccnu.edu.cn
|
Cite this article:
Hou Xi-Wen (侯喜文), Wan Ming-Fang (万明芳), Ma Zhong-Qi (马中骐) Vibrational spectra and intramolecular vibrational redistribution in methane and its isotopomers 2012 Chin. Phys. B 21 103301
|
[1] |
Parmenter C S 1983 J. Chem. Soc. Faraday Dis. 75 7
|
[2] |
Barnes G L and Kellman M E 2011 J. Chem. Phys. 135 144113
|
[3] |
Xia C L and Liu X S 2012 Acta Phys. Sin. 61 043303 (in Chinese)
|
[4] |
Xie A D, Zhou L L, Ruan W, Wu D L and Luo W L 2012 Acta Phys. Sin. 61 043302 (in Chinese)
|
[5] |
Child M S and Halonen L 1984 Adv. Chem. Phys. 57 1
|
[6] |
Halonen L 1998 Adv. Chem. Phys. 104 41
|
[7] |
Davidsson J, Gutow J H, Zare R N, Hollenstein H A, Marquardt R R and Quack M 1991 J. Chem. Phys. 95 1201
|
[8] |
Marquardt R, Goncalves N S and Sala O 1995 J. Chem. Phys. 103 8391
|
[9] |
Pochert J, Quack M, Stohner J and Willeke M 2000 J. Chem. Phys. 113 2719
|
[10] |
Georges R, Herman M, Hilico J C and Robert O 1998 J. Mol. Spectrosc. 187 13
|
[11] |
Pierre G, Hilico J C, De Berg C and Maillard J P 1980 J. Mol. Spectrosc. 82 379
|
[12] |
De Martino A, Frey R and Pradere F 1984 Chem. Phys. Lett. 111 113
|
[13] |
De Martino A, Frey R and Pradere F 1985 Mol. Phys. 55 731
|
[14] |
Chevalier M and De Martino A 1987 Chem. Phys. Lett. 135 446
|
[15] |
Lee T J, Martin J M L and Taylor P R 1995 J. Chem. Phys. 102 254
|
[16] |
Halonen L 1997 J. Chem. Phys. 106 831
|
[17] |
Wang X G and Carrington T 2003 J. Chem. Phys. 119 101
|
[18] |
Venuti E, Halonen L and Della Valle R G 1999 J. Chem. Phys. 110 7339
|
[19] |
Leroy C and Michelot F 1992 J. Mol. Spectrosc. 151 71
|
[20] |
Leroy C, Colin F and Loëte M 1996 J. Mol. Spectrosc. 175 289
|
[21] |
Leroy C and Boujut V 1997 J. Mol. Spectrosc. 181 127
|
[22] |
Hou X W, Dong S H, Fang Z L and Ma Z Q 1999 J. Mol. Spectrosc. 195 132
|
[23] |
Crogman H, Boudon V and Sadovskií D A 2007 Eur. Phys. J. D 42 61
|
[24] |
Lemus R and Frank A 1994 J. Chem. Phys. 101 8321
|
[25] |
Ma Z Q, Hou X W and Xie M 1996 Phys. Rev. A 53 2173
|
[26] |
Wiesenfeld L 1997 J. Mol. Spectrosc. 184 277
|
[27] |
Lemus R and Frank A 2000 J. Mol. Spectrosc. 201 198
|
[28] |
Iachello F and Levine R D 1994 Algebraic Theroy of Molecules (Oxford: Oxford University Press)
|
[29] |
Iachello F and Oss S 1990 J. Mol. Spectrosc. 142 85
|
[30] |
Ding S and Zheng Y 1999 J. Chem. Phys. 111 4466
|
[31] |
Iachello F and Oss S 1991 Phys. Rev. Lett. 66 2976
|
[32] |
Feng H, Zheng Y and Ding S 2007 Eur. Phys. J. D 42 227
|
[33] |
Karumuri S R, Sarkar N K, Choudhury J and Bhattacharjee R 2009 J. Mol. Spectrosc. 255 183
|
[34] |
Sánchez-Castellanos M and Lemus R 2011 J. Mol. Spectrosc. 266 1
|
[35] |
Liu F, Wang J, Zhao J, Xu Y and Meng Q T 2011 Acta Phys. Sin. 60 040202 (in Chinese)
|
[36] |
Hou X W, Borondo F and Benito R M 2001 Chem. Phys. Lett. 344 421
|
[37] |
Watson J K G 1984 J. Mol. Spectrosc. 103 350
|
[38] |
Wei Q, Kais S, Friedrich B and Herschbach D 2011 J. Chem. Phys. 134 124107
|
[39] |
Hou X W, Chen J H and Ma Z Q 2006 Phys. Rev. A 74 0602513
|
[40] |
Liu Y, Zheng Y, Yan W and Ding S 2008 Phys. Rev. A 78 032523
|
[41] |
Hou X W and Cheng C C 2009 Chin. Phys. B 18 2719
|
[42] |
Hou X W, Wan M F and Ma Z Q 2010 J. Phys. A: Math. Theor. 43 205301
|
[43] |
Zhang C, Fang C and Wu G Z 2010 Chin. Phys. B 19 110515
|
[44] |
Assémat E, Efstathiou K, Joyeux M and Sugny D 2010 Phys. Rev. Lett. 104 113002
|
[45] |
Zhang W M, Feng D H and Gilmore R 1990 Rev. Mod. Phys. 62 867
|
[46] |
Hou X W, Wan M F and Ma Z Q 2012 Eur. Phys. J. D 66 152
|
[47] |
Hou X W, Huang J and Wan M F 2012 Phys. Rev. A 85 044501
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|