CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Top contact organic field effect transistors fabricated using a photolithographic process |
Wang Hong(王宏)a)b),Ji Zhuo-Yu(姬濯宇)b), Shang Li-Wei(商立伟)b), Liu Xing-Hua(刘兴华)b),Peng Ying-Quan(彭应全)a)†,and Liu Ming(刘明)b) |
a Institute of Microelectronics, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China; b Laboratory of Nano-Fabrication and Novel Devices Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China |
|
|
Abstract This paper proposes an effective method of fabricating top contact organic field effect transistors by using a photolithographic process. The semiconductor layer is protected by a passivation layer. Through photolithographic and etching processes, parts of the passivation layer are etched off to form source/drain electrode patterns. Combined with conventional evaporation and lift-off techniques, organic field effect transistors with a top contact are fabricated successfully, whose properties are comparable to those prepared with the shadow mask method and one order of magnitude higher than the bottom contact devices fabricated by using a photolithographic process.
|
Received: 25 October 2010
Revised: 08 March 2011
Accepted manuscript online:
|
PACS:
|
73.40.Cg
|
(Contact resistance, contact potential)
|
|
73.61.Ph
|
(Polymers; organic compounds)
|
|
85.30.Tv
|
(Field effect devices)
|
|
85.65.+h
|
(Molecular electronic devices)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CB808404 and 2009CB939703) and the
National Natural Science Foundation of China (Grant Nos. 10974074, 90607022, 60676001, 60676008, and 60825403). |
Cite this article:
Wang Hong(王宏), Ji Zhuo-Yu(姬濯宇), Shang Li-Wei(商立伟), Liu Xing-Hua(刘兴华), Peng Ying-Quan(彭应全), and Liu Ming(刘明) Top contact organic field effect transistors fabricated using a photolithographic process 2011 Chin. Phys. B 20 087306
|
[1] |
Ju S, Li J, Liu J, Chen P, Ha Y, Ishikawa F, Chang H, Zhou C, Facchetti A, Janes D and Marks T 2008 Nano Lett. 8 997
|
[2] |
Someya T, Sekitani T, Takamiya M, Sakurai T, Zschiesching U and Klauk H 2009 IEDM, Tech. Dig. p. 29
|
[3] |
Crone B, Dodabalapur A, Lin Y, Filas R, Bao Z, LaDuca A, Sarpeshkar R, Katz H and Li W 2000 Nature 403 521
|
[4] |
Hamilton R, Smith J, Ogier S, Heeney M, Anthony J, McCulloch I, Veres J, Bradley D and Anthopoulos T 2009 Adv. Mater. 21 1166
|
[5] |
Tao C, Zhang X, Dong M, Liu Y, Sun S, Ou G, Zhang F and Zhang H 2008 Chin. Phys. B bf 17 281
|
[6] |
Zhang L, Hua Y, Wu X, Wang Y and Yin S 2008 Chin. Phys. B 17 3097
|
[7] |
Rotzoll R, Mohapatra S, Olariu V, Wenz R, Grogs M and Dimmler K 2006 Appl. Phys. Lett. 88 123502
|
[8] |
Klauk H, Zschieschang U, Pflaum J and Halik M 2007 Nature 445 745
|
[9] |
Tang Q, Tong Y, Hu W, Wan Q and Bjornholm T 2009 Adv. Mater. 21 4234
|
[10] |
Park J, Yang R, Colesniuc C, Sharoni A, Jin S, Schuller I, Trogler W and Kummel A 2008 Appl. Phys. Lett. 92 193311
|
[11] |
Klauk H, Gundlach D and Jackson T 1999 IEEE Electron Device Lett. 20 289
|
[12] |
Hong K, Yang S, Yang C, Kim S, Choi D and Park C 2008 Organic Electronics 9 864
|
[13] |
Di C, Yu G, Liu Y, Xu X, Wei D, Song Y, Sun Y, Wang Y, Zhu D, Liu J, Liu X and Wu D 2006 J. Am. Chem. Soc. 128 16418
|
[14] |
Liu G, Liu M, Wang H, Shang L, Ji Z, Liu X and Liu J 2009 Chin. Phys. B 18 3530
|
[15] |
Street R and Salleo A 2002 Appl. Phys. Lett. 81 2887
|
[16] |
Pesavento P, Puntambekar K, Frisbie C, Mckeen J and Ruden P 2006 J. Appl. Phys. 99 094504
|
[17] |
Briseno A, Tseng R, Li S, Chu C, Yang Y, Falcao E, Wudl F, Ling M, Chen H, Bao Z, Meng H and Kloc C 2006 Appl. Phys. Lett. 89 222111
|
[18] |
Ribierre J, Watanabe S, Matsumoto M, Muto T and Aoyama1 T 2010 Appl. Phys. Lett. 96 083303
|
[19] |
Ihm K, Kim B, Kang T, Kim K, Joo M, Kim T, Yoon S and Chung S 2006 Appl. Phys. Lett. bf 89 033504
|
[20] |
Frisch J, Glowatzki H, Janietz S and Koch N 2009 Organic Electronics 10 1459
|
[21] |
Chu C, Li S, Chen C, Shrotriya V and Yang Y 2005 Appl. Phys. Lett. 87 193508
|
[22] |
Di C, Yu G, Liu Y, Guo Y, Wang Y, Wu W and Zhu D 2008 Adv. Mater. 20 1286
|
[23] |
Li Y, Lin Y, Wei C, Lin Z, Wen T, Chang M, Tsai C and Wang Y 2009 Appl. Phys. Lett. 95 163303
|
[24] |
Kymissis I, Dimitrakopoulos C and Purushothaman S 2002 J. Sci. Technol. B 20 956
|
[25] |
Lee J, Kim K, Kim J, Im S and Jung D 2003 Appl. Phys. Lett. 82 4169
|
[26] |
Liang Y, Dong G, Hu Y, Wang L and Qiu Y 2005 Appl. Phys. Lett. 86 132101
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|