Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 067503    DOI: 10.1088/1674-1056/19/6/067503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Synthesis, structure and antiferromagnetic behaviour of brannerite MnV2O6

Zhou Chuan-Cang(周传仓), Liu Fa-Min(刘发民), Ding Peng(丁芃), Cai Lu-Gang(蔡鲁刚), Zhong Wen-Wu(钟文武), and Zhang Huan(张嬛)
School of Physics and Nuclear Energy Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
Abstract  Brannerite MnV2O6 with plate-like shape is successfully synthesized by hydrothermal method. Its crystal structure and morphology are investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), high resolution transmission electron microscopy (HRTEM) and select area electronic diffraction (SAED). The results show that the brannerite MnV2O6 with monoclinic structure has a uniform plate-like shape with a diameter of about 5--8 $\mu$m and a thickness of about 500 nm. SAED patterns further confirm the structure of the brannerite MnV2O6 and the single crystalline character of the plate crystal. Magnetic properties are measured by superconducting quantum interference device (SQUID) in a temperature range of 2--300 K under a magnetic field of 1 T. The magnetic measurement results indicate that the material undergoes an antiferromagnetic transition with a Néel temperature of 17 K. Above 50 K, the inverse susceptibility is fitted well to the Curie--Weiss law with a calculated moment of 5.98 $\mu_{\rm B}$. Finally, the origin of antiferromagnetic behaviour in the brannerite MnV2O6 is explained by means of Anderson model.
Keywords:  brannerite MnV2O6      hydrothermal synthesis      antiferromagnetic behaviour  
Received:  29 October 2009      Accepted manuscript online: 
PACS:  81.10.Dn (Growth from solutions)  
  75.50.Ee (Antiferromagnetics)  
  61.66.Fn (Inorganic compounds)  
  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
  75.30.Cr (Saturation moments and magnetic susceptibilities)  
  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  

Cite this article: 

Zhou Chuan-Cang(周传仓), Liu Fa-Min(刘发民), Ding Peng(丁芃), Cai Lu-Gang(蔡鲁刚), Zhong Wen-Wu(钟文武), and Zhang Huan(张嬛) Synthesis, structure and antiferromagnetic behaviour of brannerite MnV2O6 2010 Chin. Phys. B 19 067503

[1] Hase M, Terasaki I and Uchinokura K 1993 Phys. Rev. Lett. 70 3651
[2] Uchiyama Y, Sasago Y, Tsukada I, Uchinokura K, Zheludev A, Hayashi T, Miura N and Boni P 1999 Phys. Rev. Lett. 83 632
[3] Bieringer M, Greedan J E and Luke G M 2000 Phys. Rev. B 62 6521
[4] Goossens D J, Studer A J, Kennedy S J and Hicks T J 2000 J. Phys.{\rm : Condens. Matter 12 4233
[5] Ronnow H M, Wildes A R and Bramwell S T 2000 Physica B 676 276
[6] Jiang Z J and Mo D 2000 Chin. Phys. 9 290
[7] James M and Watson J N 2002 J. Solid State Chem. 165 261
[8] Simon A, Kimber J and AttField J Paul 2007 Phys. Rev. B 75 064406
[9] Wei Y J, Kyung Wan Nam, Chen G, Chang Wan Ryu and Kwang Bum Kim 2005 Solid State Ionics 176 2243
[10] Zhou C C, Liu F M and Ding P 2009 Chin. Phys. B 18 5055
[11] Belaiche M, Bakhache M and Drillon M 2001 Physica B 305 270
[12] Prokofiev A V, Kremer R K and Assmus W 2001 J. Cryst. Growth 231 498
[13] Vasilev A N, Ponomarenko L A, Antipov E V, Velikodny Yu A, Smirnov A I, Isobe M and Ueda Y 2000 Physica B 284 1615
[14] Kim S S, Hiromasa I and Masataka Wakihara 2001 Solid State Ionics 139 57
[15] Yusaku Takita, Susumu Hikazudani, Kazuya Soda and Katsutoshi Nagaoka 2008 J. Mol. Catal. A : Chem. 280 164
[16] Wang X J, Fei Y J, Xiong Y Y, Nie Y X, Feng K A and Li L D 2002 Chin. Phys. 11 737
[17] Krzysztof Moca and Jacek Ziókowski 1987 J. Solid State Chem. 69 299
[18] Liu Y, Zhang Y G, Duan J, Yu W C and Qian Y T 2006 J. Cryst. Growth 291 320
[19] Michio Inagaki, Takahiro Morishita, Masanori Hirano, Vinay Gupta and Tsuyoshi Nakajima 2003 Solid State Ionics 156 275
[20] Kozlowski R, Ziolkowski J and Kozlowska A 1980 J. Solid State Chem. 35 1
[1] Hydrothermal synthesis and characterization of carbon-doped TiO2 nanoparticles
Zafar Ali, Javaid Ismail, Rafaqat Hussain, A. Shah, Arshad Mahmood, Arbab Mohammad Toufiq, and Shams ur Rahman. Chin. Phys. B, 2020, 29(11): 118102.
[2] Synthesis mechanism of nanoporous Sn3O4 nanosheets by hydrothermal process without any additives
Zhao Jun-Hua (赵俊华), Tan Rui-Qin (谭瑞琴), Yang Ye (杨晔), Xu Wei (许炜), Li Jia (李佳), Shen Wen-Feng (沈文峰), Wu Guo-Qiang (吾国强), Zhu You-Liang (朱友良), Yang Xu-Feng (杨旭峰), Song Wei-Jie (宋伟杰). Chin. Phys. B, 2015, 24(6): 066202.
[3] Hydrothermal synthesis of Yb3+, Tm3+ co-doped Gd6MoO12 and its upconversion properties
Di Qiu-Mei (邸秋梅), Sun Yu-Mei (孙宇梅), Xu Qi-Guang (徐齐光), Han Liu (韩柳), Xue Bing (薛兵), Sun Jia-Yue (孙家跃). Chin. Phys. B, 2015, 24(6): 067801.
[4] Morphology-controlled preparation of tungsten oxide nanostructures for gas-sensing application
Qin Yu-Xiang (秦玉香), Liu Chang-Yu (刘长雨), Liu Yang (柳杨). Chin. Phys. B, 2015, 24(2): 027304.
[5] Hydrothermal synthesis and up-conversion luminescence of Ho3+/Yb3+ co-doped CaF2
Yang Zheng (杨征), Guo Chong-Feng (郭崇峰), Chen Ye-Qing (陈叶青), Li Lin (李琳), Li Ting (李婷), Jeong Jung-Hyun (郑仲铉). Chin. Phys. B, 2014, 23(6): 064212.
[6] Chemical synthesis of zinc oxide nanorods for enhanced hydrogen gas sensing
Musarrat Jabeen, Muhammad Azhar Iqbal, R Vasant Kumar, Mansoor Ahmed, Muhammad Tayyeb Javed. Chin. Phys. B, 2014, 23(1): 018504.
[7] A novel Dy3+-doped GdPO4 white-light phosphors under vacuum ultraviolet excitation for Hg-free lamps application
Han Guo-Cai(韩国才), Wang Yu-Hua(王育华), Wu Chun-Fang(吴春芳), and Zhang Jia-Chi(张加驰). Chin. Phys. B, 2009, 18(10): 4532-4535.
No Suggested Reading articles found!