Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 120301    DOI: 10.1088/1674-1056/19/12/120301
GENERAL Prev   Next  

Lagrange equations of nonholonomic systems with fractional derivatives

Zhou Sha(周莎), Fu Jing-Li(傅景礼), and Liu Yong-Song(刘咏松)
Institute of Mathematical Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
Abstract  This paper obtains Lagrange equations of nonholonomic systems with fractional derivatives. First, the exchanging relationships between the isochronous variation and the fractional derivatives are derived. Secondly, based on these exchanging relationships, the Hamilton's principle is presented for non-conservative systems with fractional derivatives. Thirdly, Lagrange equations of the systems are obtained. Furthermore, the d'Alembert–Lagrange principle with fractional derivatives is presented, and the Lagrange equations of nonholonomic systems with fractional derivatives are studied. An example is designed to illustrate these results.
Keywords:  fractional derivative      d'Alembert–Lagrange principle      Lagrange equation      nonholonomic system  
Received:  09 July 2010      Revised:  26 July 2010      Accepted manuscript online: 
PACS:  0320  
  4610  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11072218 and 10672143).

Cite this article: 

Zhou Sha(周莎), Fu Jing-Li(傅景礼), and Liu Yong-Song(刘咏松) Lagrange equations of nonholonomic systems with fractional derivatives 2010 Chin. Phys. B 19 120301

[1] Naber M 2004 J. Math. Phys. 45 3339
[2] Zaslavsky G M and Edelman M A 2004 Physica D 193 128
[3] Agrawal O 2004 Nonlinear Dynamics 38 323
[4] Eqab M R, Tareg S A H and Rousan A 2004 Int. J. Mod. Phys. A 19 3083
[5] Klimek M 2002 Czechoslovak J. Phys. 52 1247
[6] Miller K S and Ross B 1993 An Introduction to the Fractional Calculus and Fractional Differential Equations (New York: Wiley-Interscience Publication)
[7] Samko S G, Anatoly A K and Oleg I M 1993 Fractional Integrals and Derivatives (Yverdon: Gordon and Breach Science Publishers)
[8] Riewe F 1996 Phys. Rev. E 53 1890
[9] Riewe F 1997 Phys. Rev. E 55 3581
[10] Agrawal O P 2002 J. Math. Anal. Appl. 272 368
[11] Dreisigmeyer D W and Young P M 2003 J. Phys. A 36 3297
[12] Mei F X and Wu H B 2009 Dynamics of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) p. 115
[1] Conformable fractional heat equation with fractional translation symmetry in both time and space
W S Chung, A Gungor, J Kříž, B C Lütfüoǧlu, and H Hassanabadi. Chin. Phys. B, 2023, 32(4): 040202.
[2] A local refinement purely meshless scheme for time fractional nonlinear Schrödinger equation in irregular geometry region
Tao Jiang(蒋涛), Rong-Rong Jiang(蒋戎戎), Jin-Jing Huang(黄金晶), Jiu Ding(丁玖), and Jin-Lian Ren(任金莲). Chin. Phys. B, 2021, 30(2): 020202.
[3] Quasi-canonicalization for linear homogeneous nonholonomic systems
Yong Wang(王勇), Jin-Chao Cui(崔金超), Ju Chen(陈菊), Yong-Xin Guo(郭永新). Chin. Phys. B, 2020, 29(6): 064501.
[4] Generalized Chaplygin equations for nonholonomic systems on time scales
Shi-Xin Jin(金世欣), Yi Zhang(张毅). Chin. Phys. B, 2018, 27(2): 020502.
[5] Stochastic bifurcations of generalized Duffing-van der Pol system with fractional derivative under colored noise
Wei Li(李伟), Mei-Ting Zhang(张美婷), Jun-Feng Zhao(赵俊锋). Chin. Phys. B, 2017, 26(9): 090501.
[6] Stochastic response of van der Pol oscillator with two kinds of fractional derivatives under Gaussian white noise excitation
Yong-Ge Yang(杨勇歌), Wei Xu(徐伟), Ya-Hui Sun(孙亚辉), Xu-Dong Gu(谷旭东). Chin. Phys. B, 2016, 25(2): 020201.
[7] Generalized Birkhoffian representation of nonholonomic systems and its discrete variational algorithm
Shixing Liu(刘世兴), Chang Liu(刘畅), Wei Hua(花巍), Yongxin Guo(郭永新). Chin. Phys. B, 2016, 25(11): 114501.
[8] Non-Noether symmetries of Hamiltonian systems withconformable fractional derivatives
Lin-Li Wang (王琳莉) and Jing-Li Fu(傅景礼). Chin. Phys. B, 2016, 25(1): 014501.
[9] Response of a Duffing—Rayleigh system with a fractional derivative under Gaussian white noise excitation
Zhang Ran-Ran (张冉冉), Xu Wei (徐伟), Yang Gui-Dong (杨贵东), Han Qun (韩群). Chin. Phys. B, 2015, 24(2): 020204.
[10] Space–time fractional KdV–Burgers equation for dust acoustic shock waves in dusty plasma with non-thermal ions
Emad K. El-Shewy, Abeer A. Mahmoud, Ashraf M. Tawfik, Essam M. Abulwafa, Ahmed Elgarayhi. Chin. Phys. B, 2014, 23(7): 070505.
[11] Noether's theorems of a fractional Birkhoffian system within Riemann–Liouville derivatives
Zhou Yan (周燕), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(12): 124502.
[12] Fractional cyclic integrals and Routh equations of fractional Lagrange system with combined Caputo derivatives
Wang Lin-Li (王琳莉), Fu Jing-Li (傅景礼). Chin. Phys. B, 2014, 23(12): 124501.
[13] Lie symmetry theorem of fractional nonholonomic systems
Sun Yi (孙毅), Chen Ben-Yong (陈本永), Fu Jing-Li (傅景礼). Chin. Phys. B, 2014, 23(11): 110201.
[14] Mei symmetry and conservation laws of discrete nonholonomic dynamical systems with regular and irregular lattices
Zhao Gang-Ling (赵纲领), Chen Li-Qun (陈立群), Fu Jing-Li (傅景礼), Hong Fang-Yu (洪方昱). Chin. Phys. B, 2013, 22(3): 030201.
[15] Fractional Cattaneo heat equation in a semi-infinite medium
Xu Huan-Ying (续焕英), Qi Hai-Tao (齐海涛), Jiang Xiao-Yun (蒋晓芸). Chin. Phys. B, 2013, 22(1): 014401.
No Suggested Reading articles found!