|
|
Time-energy properties of an attosecond extreme ultra-violet pulse |
Ge Yu-Cheng(葛愉成)†ger and He Hai-Ping(何海萍) |
School of Physics and Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China |
|
|
Abstract The time-energy properties of high-order harmonic generation (HHG) are calculated for a linearly polarized 7-fs laser pulse with different carrier-envelope phases (CEPs). The quantum trajectory paths that contribute to an as (1 as=10-18 s) pulse in HHG are identified. The laser-duration dependence and the CEP dependence of HHG energy property are investigated. The study shows that an as extreme ultra-violet (XUV) pulse can be selected from HHG spectrum near cut-off energy with a bandpass optical filter. The theoretical prediction of the pulse duration is proportional to bandwidth. Analysis suggests that a measured narrowband as XUV pulse may consist of instantaneous shorter pulses each dependent on laser pulse duration, intensity, and CEP. These information can be used as references for producing, selecting, improving and manipulating (timing) as pulses.
|
Received: 29 April 2010
Revised: 13 July 2010
Accepted manuscript online:
|
PACS:
|
32.80.Fb
|
(Photoionization of atoms and ions)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10827505 and 10675014). |
Cite this article:
Ge Yu-Cheng(葛愉成) and He Hai-Ping(何海萍) Time-energy properties of an attosecond extreme ultra-violet pulse 2010 Chin. Phys. B 19 103302
|
[1] |
Drescher M, Hentschel M, Kienberger R, Tempea G, Spielmann C, Reider G A, Corkum P B and Krausz F 2001 emphScience 291 1923
|
[2] |
Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P B, Heinzmann U, Drescher M and Krausz F 2001 emphNature (London) 414 509
|
[3] |
Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U and Krausz F 2002 emphNature (London) 419 803
|
[4] |
Kienberger R, Goulielmakies E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Drescher M and Krausz F 2004 emphNature (London) 427 817
|
[5] |
Goulielmakis E, Uiberacker M, Kienberger R, Baltuska A, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Drescher M and Krausz F 2004 emphScience 305 1267
|
[6] |
Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, Silvestri S D and Nisoli M 2006 emphScience 314 443
|
[7] |
Spielmann C and Burnett N H 1997 emphScience 278 661
|
[8] |
Schn"urer M, Spielmann C, Wobrauschek P, Streli C, Burnett N H, Kan C, Ferencz K, Koppitsch R, Cheng Z, Brabec T and Krausz F 1998 emphPhys. Rev. Lett. 80 3236
|
[9] |
Kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Drescher M and Krausz F 2005 emphJ. Mod. Opt. 52 261
|
[10] |
Scrinzi A, Ivanov M U, Kienberger R and Villeneuve D M 2006 emphJ. Phys. B: At. Mol. Opt. Phys. 39 R1
|
[11] |
Cavalieri A , M"uller N, Uphues T, Yakovlev V S, Baltuka A, Horvath B, Schmidt B, Bl"umel L, Holzwarth R, Hendel S, Drescher M, Kleineberg U, Echenique P M, Kienberger R, Krausz F and Heinzmann U 2007 emphNature 449 1029
|
[12] |
Mairesse Y, Bohan A D, Frasinski L J, Merdji H, Dinu L C, Monchicourt P, Breger P, Kovavcev M, Auguste T, Carr'e B, Muller H G, Agostini P and Sali`eres P 2004 emphPhys. Rev. Lett. 93 163901
|
[13] |
Gaarde M B and Schafer K J 2006 emphOpt. Lett. 31 3188
|
[14] |
Schiessl K, Ishikawa K L, Persson E and Burgd"orfer J 2007 emphPhys. Rev. Lett. 99 253903
|
[15] |
Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F and Kleineberg U 2008 emphScience 320 1614
|
[16] |
Ge Y C 2006 emphPhys. Rev. A 74 015803
|
[17] |
Ge Y C 2008 emphPhys. Rev. A 77 033851
|
[18] |
Ge Y C 2005 emphActa Phys. Sin. 54 2653 (in Chinese)
|
[19] |
Ge Y C 2005 emphActa Phys. Sin. 54 2669 (in Chinese)
|
[20] |
Ge Y C 2006 emphActa Phys. Sin. 55 3386 (in Chinese)
|
[21] |
Ge Y C 2005 emphChin. Phys. Lett. 22 349
|
[22] |
Ge Y C 2005 emphChin. Phys. Lett. 22 1916
|
[23] |
Ge Y C 2006 emphChin. Phys. Lett. 23 143
|
[24] |
Ge Y C 2006 emphChin. Phys. 15 2909
|
[25] |
Ge Y C 2008 emphChin. Phys. B 17 2072
|
[26] |
Ge Y C 2008 emphChin. Phys. B 17 4492
|
[27] |
Ge Y C 2009 emphChin. Phys. B 18 1473
|
[28] |
Potvliege R M, Kylstra N J and Joachain C J 2000 emphJ. Phys. B: At. Mol. Opt. Phys. 33 L743
|
[29] |
Corkum P B and Krausz F 2007 emphNature Phys. 3 381
|
[30] |
Nisoli N and Sansoni G 2009 emphProg. Quantum Electron. 33 17
|
[31] |
Lewenstein M, Balcou P, Ivanov M Y, LHuillier A and Corkum P B 1994 emphPhys. Rev. A 49 2117 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|