Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 017305    DOI: 10.1088/1674-1056/19/1/017305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Phase field investigation on the initial planar instability with surface tension anisotropy during directional solidification of binary alloys

Wang Zhi-Jun(王志军), Wang Jin-Cheng(王锦程), and Yang Gen-Cang(杨根仓)
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  Phase field investigation reveals that the stability of the planar interface is related to the anisotropic intensity of surface tension and the misorientation of preferred crystallographic orientation with respect to the heat flow direction. The large anisotropic intensity may compete to determine the stability of the planar interface. The destabilizing effect or the stabilizing effect depends on the misorientation. Moreover, the interface morphology of initial instability is also affected by the surface tension anisotropy.
Keywords:  surface tension anisotropy      directional solidification      interfacial stability  
Received:  13 April 2009      Revised:  15 June 2009      Accepted manuscript online: 
PACS:  81.30.Fb (Solidification)  
  61.50.-f (Structure of bulk crystals)  
  61.66.Dk (Alloys )  
  68.03.Cd (Surface tension and related phenomena)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50401013) and the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University of China (NWPU) (Grant No. KP200903).

Cite this article: 

Wang Zhi-Jun(王志军), Wang Jin-Cheng(王锦程), and Yang Gen-Cang(杨根仓) Phase field investigation on the initial planar instability with surface tension anisotropy during directional solidification of binary alloys 2010 Chin. Phys. B 19 017305

[1] Mullins W W and Sekerka R F 1964 J. Appl. Phys. 35 444
[2] Ben Amar M and Pomeau Y 1986 Europhys. Lett. 2 307
[3] Barbieri A, Hong D C and Langer J S 1987 Phys. Rev. A 35 1802
[4] Xu J J 1996 Phys. Rev. E 53 5051
[5] Coriell S R and Sekerka R F 1976 J. Cryst. Growth 34 157
[6] McFadden G B, Coriell S R and Sekerka R F 1988 J. Cryst. Growth 91 180
[7] Hoyle R B, McFadden G B and Davis S H 1996 Phil. Trans. R. Soc. London A 354 2915
[8] Wang Z J, Wang J C and Yang G C 2008 Acta Phys. Sin. 57] 1246 (in Chinese)[ Wang Z J, Wang J C and Yang G C 2009 Cryst. Res. Technol. 44 43
[9] Akamatsu S, Faivre G and Ihle T 1995 Phys. Rev. E 51 4751
[10] Fedorov O P 1995 J. Cryst. Growth 156 473
[11] Okada T and Saito Y 1996 Phys. Rev. E 54 650
[12] Akamatsu S and Faivre G 1998 Phys. Rev. E 58 3302
[13] Utter B and Bodenschatz E 2002 Phys. Rev. E 66 051604
[14] Utter B, Ragnarsson R and Bodenschatz E 2002 Phys. Rev. Lett. 86 4604
[15] Deschamps J, Georgelin M and Pocheau A 2006 Europhys. Lett. 76 291
[16] Pocheau A, Deschamps J and Georgelin M 2007 JOM 59 71
[17] Deschamps J, Georgelin M and Pocheau A 2008 Phys. Rev. E 78 011605
[18] Warren J A and Langer J S 1993 Phys. Rev. E 47 2702
[19] Losert W, Shi B Q and Cummins H Z 1998 Proc. Natl. Acad. Sci. U.S.A. 95 431
[20] Boettinger W J, Warren J A, Beckermann C and Karma A 2002 Ann. Rev. Mater. Res. 23 163
[21] Moelans N, Blanpain B and Wollants P 2008 CALPHAD 32 268
[22] Echebarria B, Folch R, Karma A and Plapp M 2004 Phys. Rev. E 70 061604
[23] Glicksman M E, Schaefer R J and Ayers J D 1976 Metall. Trans. A 7A 1747
[1] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[2] Numerical study of growth competition between twin grains during directional solidification by using multi-phase field method
Chang-Sheng Zhu(朱昶胜), Ting Wang(汪婷), Li Feng(冯力), Peng Lei(雷鹏), and Fang-Lan Ma(马芳兰). Chin. Phys. B, 2022, 31(2): 028102.
[3] Effects of physical parameters on the cell-to-dendrite transition in directional solidification
Wei Lei (魏雷), Lin Xin (林鑫), Wang Meng (王猛), Huang Wei-Dong (黄卫东). Chin. Phys. B, 2015, 24(7): 078108.
[4] Tip-splitting instability in directional solidification based on bias field method
You Jia-Xue (游家学), Wang Zhi-Jun (王志军), Li Jun-Jie (李俊杰), Wang Jin-Cheng (王锦程). Chin. Phys. B, 2015, 24(7): 078107.
[5] Dendrite to symmetry-broken dendrite transition in directional solidification of non-axially oriented crystals
Xing Hui (邢辉), Wang Jian-Yuan (王建元), Chen Chang-Le (陈长乐), Jin Ke-Xin (金克新), Du Li-Fei (杜立飞). Chin. Phys. B, 2014, 23(3): 038104.
[6] Probing the thermoelectric transport properties of n-type Bi2Te3 close to the limit of constitutional undercooling
Feng Song-Ke (冯松科), Li Shuang-Ming (李双明), Fu Heng-Zhi (傅恒志). Chin. Phys. B, 2014, 23(11): 117202.
[7] The effect of interfacial energy anisotropy on planar interface instability in a succinonitrile alloy under a small temperature gradient
Wang Li-Lin(王理林), Wang Zhi-Jun(王志军), Lin Xin(林鑫), Wang Meng(王猛), and Huang Wei-Dong(黄卫东) . Chin. Phys. B, 2012, 21(6): 066801.
[8] What happens to the initial planar instability when the thermal gradient is increased during directional solidification?
Wang Zhi-Jun(王志军), Wang Jin-Cheng(王锦程), Li Jun-Jie(李俊杰), Yang Gen-Cang(杨根仓), and Zhou Yao-He(周尧和) . Chin. Phys. B, 2011, 20(10): 108104.
[9] The effect of anisotropic surface tension on the morphological stability of planar interface during directional solidification
Chen Ming-Wen(陈明文), Lan Man(兰曼), Yuan Lin(袁琳), Wang Yu-Yan(王玉燕), Wang Zi-Dong(王自东), and Xu Jian-Jun(徐鉴君). Chin. Phys. B, 2009, 18(4): 1691-1699.
[10] Investigation on stability of directionally solidified CBr4--C2Cl6 lamellar eutectic by using multiphase field simulation
Zhu Yao-Chan(朱耀产), Wang Jin-Cheng(王锦程), Yang Gen-Cang(杨根仓), and Zhao Da-Wen(赵达文). Chin. Phys. B, 2007, 16(3): 805-811.
No Suggested Reading articles found!