Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(8): 3466-3472    DOI: 10.1088/1674-1056/18/8/056
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

The influence of nonparaxiality on the spectral behavior in Young's experiment illuminated by partially coherent light

Zhao Guang-Pu(赵光普)a)† and Lü Bai-Da(吕百达)b)
a Computational Physics Key Laboratory of Higher Education of Sichuan Province, Yibin University, Yibin 644000, China; b Institute of Laser Physics and Chemistry, Sichuan University, Chengdu 610064, China
Abstract  Starting from the Rayleigh--Sommerfeld diffraction integral, this paper studies the spectral behavior in Young's experiment illuminated by nonparaxial partially coherent light and compares with the paraxial case, where the influence of nonparaxiality of partially coherent light on the spectral shifts and spectral switches is stressed. It is shown that there is a spectral shift in the nonparaxial case relative to the paraxial one and the critical position changes, at which the spectral switch occurs. The ratio of the waist width to the central wavelength $w_0/\lambda_0$ and relative spatial correlation length $\varDelta$ affect the spectral difference. The smaller $w_0/\lambda_0$ is, the larger the difference between the nonparaxial and paraxial results appears. The effect of relative spatial correlation length $\varDelta$ is relatively small.
Keywords:  nonparaxial beams      Young's experiment      spectral shift and spectral switch      partially coherent light  
Received:  05 December 2008      Revised:  02 January 2009      Accepted manuscript online: 
PACS:  42.25.Kb (Coherence)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Hz (Interference)  
Fund: Project suported by the National Natural Science Foundation of China (Grant No 10574097),the Outstanding Young Researcher Foundation of Sichuan Province, China (Grant No 03ZQ026-061), the Applied and Basic Research Foundation of Sichuan Province, China (Grant No 05J Y029-102), and the Natural Science Foundation of Yibin University, China (Grant No 2008B04).

Cite this article: 

Zhao Guang-Pu(赵光普) and Lü Bai-Da(吕百达) The influence of nonparaxiality on the spectral behavior in Young's experiment illuminated by partially coherent light 2009 Chin. Phys. B 18 3466

[1] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[2] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[3] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[4] Non-Rayleigh photon statistics of superbunching pseudothermal light
Chao-Qi Wei(卫超奇), Jian-Bin Liu(刘建彬), Xue-Xing Zhang(张学星), Rui Zhuang(庄睿), Yu Zhou(周宇), Hui Chen(陈辉), Yu-Chen He(贺雨晨), Huai-Bin Zheng(郑淮斌), and Zhuo Xu(徐卓). Chin. Phys. B, 2022, 31(2): 024209.
[5] Exploration of magnetic field generation of H32+ by direc ionization and coherent resonant excitation
Zhi-Jie Yang(杨志杰), Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2021, 30(12): 123203.
[6] Far-zone behaviors of scattering-induced statistical properties of partially polarized spatially and spectrally partially coherent electromagnetic pulsed beam
Yan Li(李艳), Ming Gao(高明)†, Hong Lv(吕宏), Li-Guo Wang(王利国), and Shen-He Ren(任神河). Chin. Phys. B, 2020, 29(10): 104201.
[7] Non-Gaussian statistics of partially coherent light inatmospheric turbulence
Hao Ni(倪昊), Chunhao Liang(梁春豪), Fei Wang(王飞), Yahong Chen(陈亚红), Sergey A. Ponomarenko, Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(6): 064203.
[8] Physics of quantum coherence in spin systems
Maimaitiyiming Tusun(麦麦提依明·吐孙), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2019, 28(2): 024204.
[9] Lensless two-color ghost imaging from the perspective of coherent-mode representation
Bin Luo(罗斌), Guohua Wu(吴国华), Longfei Yin(尹龙飞). Chin. Phys. B, 2018, 27(9): 094202.
[10] Influence of moderate-to-strong anisotropic non-Kolmogorov turbulence on intensity fluctuations of a Gaussian-Schell model beam in marine atmosphere
Mingjian Cheng(程明建), Lixin Guo(郭立新), Jiangting Li(李江挺). Chin. Phys. B, 2018, 27(5): 054203.
[11] Birefringence via Doppler broadening and prevention of information hacking
Humayun Khan, Muhammad Haneef, Bakhtawar. Chin. Phys. B, 2018, 27(1): 014201.
[12] Quantum coherence and non-Markovianity of an atom in a dissipative cavity under weak measurement
Yu Liu(刘禹), Hong-Mei Zou(邹红梅), Mao-Fa Fang(方卯发). Chin. Phys. B, 2018, 27(1): 010304.
[13] Visibility enhancement in two-dimensional lensless ghost imaging with true thermal light
Xi-Hao Chen(陈希浩), Ling Yan(燕玲), Wei Wu(吴炜), Shao-Ying Meng(孟少英), Ling-An Wu(吴令安), Zhi-Bin Sun(孙志斌), Chao Wang(王超), Guang-Jie Zhai(翟光杰). Chin. Phys. B, 2017, 26(6): 060702.
[14] Adjustable quantum coherence effects in a hybrid optomechanical system
Wen-Qing Xia(夏文清), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2017, 26(5): 054210.
[15] Propagation factor of electromagnetic concentric rings Schell-model beams in non-Kolmogorov turbulence
Zhen-Zhen Song(宋真真), Zheng-Jun Liu(刘正君), Ke-Ya Zhou(周可雅), Qiong-Ge Sun(孙琼阁), Shu-Tian Liu(刘树田). Chin. Phys. B, 2017, 26(2): 024201.
No Suggested Reading articles found!