Adaptive generalized projective synchronization of two different chaotic systems with unknown parameters
Zhang Ruo-Xun(张若洵)ab, Yang Shi-Ping(杨世平)a
a College of Physics, Hebei Normal University, Shijiazhuang 050016, China; b The Elementary Education College, Xingtai University, Xingtai 054001, China
Abstract This paper presents a general method of the generalized projective synchronization and the parameter identification between two different chaotic systems with unknown parameters. This approach is based on Lyapunov stability theory, and employs a combination of feedback control and adaptive control. With this method one can achieve the generalized projective synchronization and realize the parameter identifications between almost all chaotic (hyperchaotic) systems with unknown parameters. Numerical simulations results are presented to demonstrate the effectiveness of the method.
Received: 28 April 2008
Revised: 27 May 2008
Accepted manuscript online:
Fund: Project supported
by the Natural Science Foundation of Hebei
Province, China (Grant No A2006000128).
Cite this article:
Zhang Ruo-Xun (张若洵), Yang Shi-Ping (杨世平) Adaptive generalized projective synchronization of two different chaotic systems with unknown parameters 2008 Chin. Phys. B 17 4073
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.