Please wait a minute...
Chinese Physics, 2003, Vol. 12(4): 381-388    DOI: 10.1088/1009-1963/12/4/307
GENERAL Prev   Next  

Synchronization of the time-varying parameter chaotic system and its application to secure communication

Mu Jing (牟静), Tao Chao (陶超), Du Gong-Huan (杜功焕)
State Key Laboratory of Modern Acoustics and Institute of Acoustics, Nanjing University, Nanjing 210093, China
Abstract  In this paper we propose and investigate the synchronization of a new chaotic model with time-varying parameters and apply it to improve the security of chaotic communication. In this model, the chaotic system is modulated by both the message and the varying parameters. The varying parameters distort the phase space so heavily that they prevent the carrier from being broken by nonlinear dynamic forecasting method. Theory and simulation experiments with speech signal communication indicate that the receiver can gain a perfect synchronization with the transmitter, and the intruder cannot break down this communication system. We also discuss the robustness of the new communication system.
Keywords:  time-varying parameter      chaotic synchronization      nonlinear dynamic forecasting  
Received:  01 July 2002      Revised:  03 January 2003      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Vx (Communication using chaos)  
  89.70.+c  
  43.72.+q (Speech processing and communication systems)  
  84.40.Ua (Telecommunications: signal transmission and processing; communication satellites)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 10074035 and 19834040).

Cite this article: 

Mu Jing (牟静), Tao Chao (陶超), Du Gong-Huan (杜功焕) Synchronization of the time-varying parameter chaotic system and its application to secure communication 2003 Chinese Physics 12 381

[1] Cooperative behaviors of coupled nonidentical oscillators with the same equilibrium points
Wen Sun(孙文), Biwen Li(李必文), Wanli Guo(郭万里), Zhigang Zheng(郑志刚), and Shihua Chen(陈士华). Chin. Phys. B, 2021, 30(10): 100504.
[2] A specific state variable for a class of 3D continuous fractional-order chaotic systems
Zhou Ping(周平), Cheng Yuan-Ming(程元明), and Kuang Fei(邝菲). Chin. Phys. B, 2010, 19(7): 070507.
[3] Synchronization between two different chaotic systems with noise perturbation
Sun Yong-Zheng(孙永征) and Ruan Jiong(阮炯) . Chin. Phys. B, 2010, 19(7): 070513.
[4] Improving performance of optical fibre chaotic communication by dispersion compensation techniques
Zhang Jian-Zhong(张建忠), Wang Yun-Cai(王云才), and Wang An-Bang(王安帮). Chin. Phys. B, 2008, 17(9): 3264-3269.
[5] Adaptive coupled synchronization of non-autonomous systems in ring networks
Guo Liu-Xiao(过榴晓), Xu Zhen-Yuan(徐振源), and Hu Man-Feng(胡满峰). Chin. Phys. B, 2008, 17(3): 836-841.
[6] A unified approach to fuzzy modelling and robust synchronization of different hyperchaotic systems
Yu Wen (张化光), Zhao Yan (赵 琰), Yang Dong-Sheng (余 文), Zhang Hua-Guang (杨东升). Chin. Phys. B, 2008, 17(11): 4056-4066.
[7] Chaotic synchronization via linear controller
Chen Feng-Xiang(陈凤祥) and Zhang Wei-Dong(张卫东). Chin. Phys. B, 2007, 16(4): 937-941.
[8] Dynamics of erbium-doped fibre laser with optical delay feedback and chaotic synchronization
Fan Wen-Hua(范文华), Tian Xiao-Jian(田小建), Chen Ju-Fang(陈菊芳), Zheng Fan(郑凡), Yu Yong-Li(于永力), Gao Bo(高博), and Luo Hong-E(罗红娥). Chin. Phys. B, 2007, 16(10): 2908-2912.
[9] La Shalle's invariant-set-theory based asymptotic synchronization of duffing system with unknown parameters
Yu Dong-Chuan (禹东川), Wu Ai-Guo (吴爱国). Chin. Phys. B, 2006, 15(1): 95-99.
[10] Digital communication of two-dimensional messages in a chaotic optical system
Zhou Yun (周云), Wu Liang (吴亮), Zhu Shi-Qun (朱士群). Chin. Phys. B, 2005, 14(11): 2196-2201.
[11] Communications using multi-mode laser system based on chaotic synchronization
Wu Liang (吴亮), Zhu Shi-Qun (朱士群). Chin. Phys. B, 2003, 12(3): 300-304.
No Suggested Reading articles found!