A design of novel type superconducting magnet for super-high field functional magnetic resonance imaging by using the harmonic analysis method of magnetic vector potentials
Zu Dong-Lin (俎栋林), Guo Hua (郭华), Song Xiao-Yu (宋枭禹), Bao Shang-Lian (包尚联)
Beijing Key Laboratory of Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
Abstract The approach of expanding the magnetic scalar potential in a series of Legendre polynomials is suitable for designing a conventional superconducting magnetic resonance imaging magnet of distributed solenoidal configuration. Whereas the approach of expanding the magnetic vector potential in associated Legendre harmonics is suitable for designing a single-solenoid magnet that has multiple tiers, in which each tier may have multiple layers with different winding lengths. A set of three equations to suppress some of the lowest higher-order harmonics is found. As an example, a 4T single-solenoid magnetic resonance imaging magnet with 4×6 layers of superconducting wires is designed. The degree of homogeneity in the 0.5m diameter sphere volume is better than 5.8 ppm. The same degree of homogeneity is retained after optimal integralization of turns in each correction layer. The ratio Bm/B0 in the single-solenoid magnet is 30% lower than that in the conventional six-solenoid magnet. This tolerates higher rated superconducting current in the coil. The Lorentz force of the coil in the single-solenoid system is also much lower than in the six-solenoid system. This novel type of magnet possesses significant advantage over conventional magnets, especially when used as a super-high field functional magnetic resonance imaging magnet.
Received: 16 March 2002
Revised: 25 April 2002
Accepted manuscript online:
PACS:
84.71.Ba
(Superconducting magnets; magnetic levitation devices)
Fund: Project supported by the National Natural Science Foundation of China (Grant No 19675005).
Cite this article:
Zu Dong-Lin (俎栋林), Guo Hua (郭华), Song Xiao-Yu (宋枭禹), Bao Shang-Lian (包尚联) A design of novel type superconducting magnet for super-high field functional magnetic resonance imaging by using the harmonic analysis method of magnetic vector potentials 2002 Chinese Physics 11 1008
The stability margin on EAST tokamak Qian Jin-Ping(钱金平), Wan Bao-Nian(万宝年), Shen Biao(沈彪), M.L. Walker, D.A. Humphreys, and Xiao Bing-Jia(肖炳甲). Chin. Phys. B, 2009, 18(6): 2432-2440.
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Altmetric
blogs
tweeters
Facebook pages
Wikipedia page
Google+ users
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.