Please wait a minute...
Chinese Physics, 2001, Vol. 10(9): 869-873    DOI: 10.1088/1009-1963/10/9/319
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

REMARKABLE IMPROVEMENT OF THE COERCIVITY OF TbMn6Sn6 COMPOUND BY MELT-SPINNING PROCESS

Zhao Peng (赵鹏), Zhang Shao-ying (张绍英), Zhang Hong-wei (张宏伟), Yan A-ru (阎阿儒), Shen Bao-gen (沈保根)
State Key Laboratory of Magnetism, Institute of Physics and Centre for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100080, China
Abstract  The melt-spinning process has been carried out to improve the hard-magnetic properties of the TbMn6Sn6 compound. For the TbMn6Sn6 ribbons quenched at a rate of 40m/s and annealed at 545K for 30min, the highest coercivity of about 0.6T is achieved at room temperature, which is much higher than that of the TbMn6Sn6 ingot. Both the ingot and the ribbon coercivities will increase with decreasing temperature. For ribbons, a greater improvement of coercivity has been made at lower temperatures. Microstructural studies show the uniform nanocrystalline distribution in the TbMn6Sn6 ribbons and a small amount of Tb-rich phase in grain boundaries. The observed remarkable improvement of magnetic hardening in ribbons is believed to arise from the uniform nanoscale microstructure and the domain-wall pinning at the grain boundaries.
Keywords:  melt-spinning process      nanoscale microstructure      coercivity  
Received:  03 April 2001      Revised:  09 May 2001      Accepted manuscript online: 
PACS:  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
  81.20.-n (Methods of materials synthesis and materials processing)  
  75.60.Ch (Domain walls and domain structure)  
  75.60.Nt (Magnetic annealing and temperature-hysteresis effects)  
  81.40.Gh (Other heat and thermomechanical treatments)  
Fund: Project supported by the State Key Project of Fundamental Research and the National Natural Science Foundation of China (Grant No. 19804017).

Cite this article: 

Zhao Peng (赵鹏), Zhang Shao-ying (张绍英), Zhang Hong-wei (张宏伟), Yan A-ru (阎阿儒), Shen Bao-gen (沈保根) REMARKABLE IMPROVEMENT OF THE COERCIVITY OF TbMn6Sn6 COMPOUND BY MELT-SPINNING PROCESS 2001 Chinese Physics 10 869

[1] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[2] Magnetic properties and resistivity of a 2:17-type SmCo magnet doped with ZrO2
Qi-Qi Yang(杨棋棋), Zhuang Liu(刘壮), Chao-Yue Zhang(张超越), Hai-Chen Wu(吴海辰), Xiao-Lei Gao(高晓磊), Yi-Long Ma(马毅龙), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(7): 077504.
[3] Texture analysis of ultra-high coercivity Sm2Co7 hot deformation magnets
Qiang Ma(马强), Meishuang Jia(贾美爽), Zhifeng Hu(胡智峰), Ming Yue(岳明), Yanli Liu(刘艳丽), Tongyun Zhao(赵同云), and Baogen Shen(沈保根). Chin. Phys. B, 2021, 30(4): 047505.
[4] Coercivity and microstructure of sintered Nd-Fe-B magnets diffused with Pr-Co, Pr-Al, and Pr-Co-Al alloys
Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Jin-Hao Zhu(朱金豪), Guang-Fei Ding(丁广飞), Bo Zheng(郑波) , Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2021, 30(2): 027503.
[5] Effect of annealing temperature on coercivity of Nd-Fe-B magnets with TbFeAl doping by process of hot-pressing
Ze-Teng Shu(舒泽腾), Bo Zheng(郑波), Guang-Fei Ding(丁广飞), Shi-Cong Liao(廖是聪), Jing-Hui Di(邸敬慧), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Lei Shi(石磊). Chin. Phys. B, 2020, 29(5): 057501.
[6] High performance RE–Fe–B sintered magnets with high-content misch metal by double main phase process
Yan-Li Liu(刘艳丽), Qiang Ma(马强), Xin Wang(王鑫), Jian-Jun Zhou(周建军), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), and Bao-Gen Shen(沈保根)†. Chin. Phys. B, 2020, 29(10): 107504.
[7] Thermal stability, crystallization, and magnetic properties of FeNiBCuNb alloys
Zhe Chen(陈哲), Qian-Ke Zhu(朱乾科), Shu-Ling Zhang(张树玲), Ke-Wei Zhang(张克维), Yong Jiang(姜勇). Chin. Phys. B, 2019, 28(8): 087502.
[8] Coercivity mechanisms in nanostructured permanent magnets
G P Zhao(赵国平), L Zhao(赵莉), L C Shen(沈来川), J Zou(邹静), L Qiu(邱雷). Chin. Phys. B, 2019, 28(7): 077505.
[9] Grain boundary restructuring and La/Ce/Y application in Nd-Fe-B magnets
Mi Yan(严密), Jiaying Jin(金佳莹), Tianyu Ma(马天宇). Chin. Phys. B, 2019, 28(7): 077507.
[10] Regulating element distribution to improve magnetic properties of sintered Nd-Fe-B/Tb-Fe-B composite magnets
Zhu-Bai Li(李柱柏), Jing-Yan Zuo(左敬燕), Dong-Shan Wang(王东山), Fei Liu(刘飞), Xue-Feng Zhang(张雪峰). Chin. Phys. B, 2019, 28(7): 077503.
[11] Micromagnetic simulations of reversal magnetization in cerium-containing magnets
Lei Li(李磊), Shengzhi Dong(董生智), Hongsheng Chen(陈红升), Ruijiao Jiang(姜瑞姣), Dong Li(李栋), Rui Han(韩瑞), Dong Zhou(周栋), Minggang Zhu(朱明刚), Wei Li(李卫), Wei Sun(孙威). Chin. Phys. B, 2019, 28(3): 037502.
[12] Mn-based permanent magnets
Jinbo Yang(杨金波), Wenyun Yang(杨文云), Zhuyin Shao(邵珠印), Dong Liang(梁栋), Hui Zhao(赵辉), Yuanhua Xia(夏元华), Yunbo Yang(杨云波). Chin. Phys. B, 2018, 27(11): 117503.
[13] Rare earth permanent magnets prepared by hot deformation process
Ren-Jie Chen(陈仁杰), Ze-Xuan Wang(王泽轩), Xu Tang(唐旭), Wen-Zong Yin(尹文宗), Chao-Xiang Jin(靳朝相), Jin-Yun Ju(剧锦云), Don Lee(李东), A-Ru Yan(闫阿儒). Chin. Phys. B, 2018, 27(11): 117504.
[14] Anisotropic nanocomposite soft/hard multilayer magnets
Wei Liu(刘伟), Zhidong Zhang(张志东). Chin. Phys. B, 2017, 26(11): 117502.
[15] Abnormal variation of magnetic properties with Ce content in (PrNdCe)2Fe14B sintered magnets prepared by dual alloy method
Xue-Feng Zhang(张雪峰), Jian-Ting Lan(兰剑亭), Zhu-Bai Li(李柱柏), Yan-Li Liu(刘艳丽), Le-Le Zhang(张乐乐), Yong-Feng Li(李永峰), Qian Zhao(赵倩). Chin. Phys. B, 2016, 25(5): 057502.
No Suggested Reading articles found!