Please wait a minute...
Chinese Physics, 2001, Vol. 10(9): 827-831    DOI: 10.1088/1009-1963/10/9/310
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

ANALYSIS OF LASING PERFORMANCES OF Yb3+-DOPED YAG, FAP, KYW CRYSTALS

Huang Li-lei (黄莉蕾)a, Hong Zhi (洪治)b, Fang Da-wei (方达伟)a
a Optoelectronic Division, China Institute of Metrology, Hangzhou 310034, China; b State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
Abstract  The Yb3+ laser emitting at a 1.03μm wavelength has been evoking strong interest recently due to its advantages of long fluorescence lifetime, broad absorption band and the fact that it never shows concentration quenching. On the other hand, as a laser of three-level system it has, in general, a relatively high threshold power, which makes it important to seek some suitable host crystals to reduce this. Here, we present a comparison of the lasing performances of Yb3+-doped YAG [Y3Al5O12], FAP [Ca5(PO4)3F] and KYW [KY(WO4)2] crystals, including threshold power and slope efficiency, with those of the Nd:YAG laser based on the threshold formula of three-and four-level systems deduced by the authors. The results show that the Yb3+ laser can output a power larger than the Nd:YAG laser does in the case of comparably higher pumping power, if the length of the lasing rod and the concentration of the active ions satisfy some conditions. The theoretical results are also close to the experimental results reported.
Keywords:  lasing performance      Yb3+ ions      YAG      FAP and KYW crystals  
Received:  05 February 2001      Revised:  05 May 2001      Accepted manuscript online: 
PACS:  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
  42.70.Hj (Laser materials)  
  42.55.Rz (Doped-insulator lasers and other solid state lasers)  
  42.55.Ah (General laser theory)  
Fund: Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. 600087), and the State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, China (Grant No. LMOI-9913).

Cite this article: 

Huang Li-lei (黄莉蕾), Hong Zhi (洪治), Fang Da-wei (方达伟) ANALYSIS OF LASING PERFORMANCES OF Yb3+-DOPED YAG, FAP, KYW CRYSTALS 2001 Chinese Physics 10 827

[1] Pump pulse characteristics of quasi-continuous-wave diode-side-pumped Nd:YAG laser
Zexin Song(宋泽鑫), Qi Bian(卞奇), Yu Shen(申玉), Keling Gong(龚柯菱), Nan Zong(宗楠), Qingshuang Zong(宗庆霜), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(5): 054208.
[2] Single-frequency distributed Bragg reflector Tm:YAG ceramic derived all-glass fiber laser at 1.95 μm
Guo-Quan Qian(钱国权), Min-Bo Wu(吴敏波), Guo-Wu Tang(唐国武), Min Sun(孙敏),Dong-Dan Chen(陈东丹), Zhi-Bin Zhang(张志斌), Hui Luo(罗辉), and Qi Qian(钱奇). Chin. Phys. B, 2022, 31(12): 124205.
[3] A 37 mJ, 100 Hz, high energy single frequency oscillator
Yu Shen(申玉), Yong Bo(薄勇), Nan Zong(宗楠), Shenjin Zhang(张申金), Qinjun Peng(彭钦军), and Zuyan Xu(许祖彦). Chin. Phys. B, 2021, 30(8): 084208.
[4] A 61-mJ, 1-kHz cryogenic Yb: YAG laser amplifier
Huijun He(何会军), Jun Yu(余军), Wentao Zhu(朱文涛), Qingdian Lin(林庆典), Xiaoyang Guo(郭晓杨), Cangtao Zhou(周沧涛), and Shuangchen Ruan(阮双琛). Chin. Phys. B, 2021, 30(12): 124206.
[5] A 3-kHz Er: YAG single-frequency laser with a ‘triple-reflection’ configuration on a piezoelectric actuator
Shuai Huang(黄帅), Qing Wang(王庆), Meng Zhang(张濛), Chaoyong Chen(陈朝勇), Kaixin Wang(王凯鑫), Mingwei Gao(高明伟), Chunqing Gao(高春清). Chin. Phys. B, 2020, 29(8): 084204.
[6] Fe: ZnSe laser pumped by a 2.93-μm Cr, Er: YAG laser
Ying-Yi Li(李英一), Tong-Yu Dai(戴通宇), Xiao-Ming Duan(段小明), Chun-Fa Guo(郭春发), Li-Wei Xu(徐丽伟), You-Lun Ju(鞠有伦). Chin. Phys. B, 2019, 28(6): 064203.
[7] Effect of thermally induced birefringence on high power picosecond azimuthal polarization Nd:YAG laser system
Hongpan Peng(彭红攀), Ce Yang(杨策), Shang Lu(卢尚), Ning Ma(马宁), Meng Chen(陈檬). Chin. Phys. B, 2019, 28(2): 024205.
[8] High-power and high optical conversion efficiency diode-end-pumped laser with multi-segmented Nd: YAG/Nd: YVO4
Meng-Yao Wu(吴梦瑶), Peng-Fei Qu(屈鹏飞), Shi-Yu Wang(王石语), Zhen Guo(过振), De-Fang Cai(蔡德芳), Bing-Bin Li(李兵斌). Chin. Phys. B, 2018, 27(9): 094207.
[9] Transition intensity calculation of Yb: YAG
Hong-Bo Zhang(张洪波), Qing-Li Zhang(张庆礼), Xing Wang(王星), Gui-Hua Sun(孙贵花), Xiao-Fei Wang(王小飞), De-Ming Zhang(张德明), Dun-Lu Sun(孙敦陆). Chin. Phys. B, 2018, 27(6): 067801.
[10] Development of an injection-seeded single-frequency laser by using the phase modulated technique
Shu-Tao Dai(戴殊韬), Hong-Chun Wu(吴鸿春), Fei Shi(史斐), Jing Deng(邓晶), Yan Ge(葛燕), Wen Weng(翁文), Wen-Xiong Lin(林文雄). Chin. Phys. B, 2018, 27(5): 054212.
[11] Design and performance of a composite Tm: YAG laser pumped by VBG-stabilized narrow-band laser diode
Shu-Tao Dai(戴殊韬), Jian-Hong Huang(黄见洪), Hai-Zhou Huang(黄海舟), Li-Xia Wu(吴丽霞), Jin-Hui Li(李锦辉), Jing Deng(邓晶), Yan Ge(葛燕), Wen-Xiong Lin(林文雄). Chin. Phys. B, 2017, 26(7): 074211.
[12] Experimental study of electro-optical Q-switched pulsed Nd:YAG laser
A Maleki, M Kavosh Tehrani, H Saghafifar, M H Moghtader Dindarlu. Chin. Phys. B, 2016, 25(3): 034206.
[13] Spectral and ion emission features of laser-produced Sn and SnO2 plasmas
Hui Lan(兰慧), Xin-Bing Wang(王新兵), Du-Luo Zuo(左都罗). Chin. Phys. B, 2016, 25(3): 035202.
[14] Diode-pumped Kerr-lens mode-locked femtosecond Yb:YAG ceramic laser
Zi-Ye Gao(高子叶), Jiang-Feng Zhu(朱江峰), Ke Wang(汪珂), Jun-Li Wang(王军利), Zhao-Hua Wang(王兆华), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(2): 024205.
[15] Effects of 946-nm thermal shift and broadening on Nd3+:YAG laser performance
Seyed Ebrahim Pourmand, Ghasem Rezaei. Chin. Phys. B, 2015, 24(12): 124206.
No Suggested Reading articles found!