Please wait a minute...
Acta Physica Sinica (Overseas Edition), 1997, Vol. 6(3): 212-222    DOI: 10.1088/1004-423X/6/3/007
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

THEORETICAL CALCULATION OF THE MAGNETIC PROPERTIES IN DISORDERED GROUND STATE FOR SPIN-1/2 ANTIFERROMAGNET

DU AN (杜安)a, WEI GUO-ZHU (魏国柱)b
a College of Sciences, Northeastern University, Shenyang 110006, China; b International Centre for Materials Physics, Academia Sinica, Shenyang 110015, China, and College of Sciences, Northeastern University, Shenyang 110006, China
Abstract  The spin-1/2 quantum antiferromagnet in three-dimensional space can be described by Heisenberg model:two nearest-neighbor spins with strong interaction in z direction consistitute a dimer, every dimer can be considered as a lattice site in the tetragonal lattice. In z direction, the exchange interaction between two nearest-neighbor dimers is $\lambda '$J, and in xy plane it is 2$\lambda$J. In bond-operator representation, within the mean-field decoupling approximation, we have calculated the phase diagram for order-disorder phase transition about $\lambda $ and $\lambda '$  at 0 K, obtained the critical value, $\lambda$= 0.292, within which the disordered phase is stable in two-dimensional case($\lambda$ = 0), and found that the disordered phase is always stable for $\lambda'$<1 in one-dimensional case($\lambda$ = 0). For the disordered phase, the physical quantities, such as energy gap, ground-state energy, two-point correlation functions and correlation lengths in xy plane and in z direction, have been calculated as functions of parameters $\lambda$ and $\lambda'$.
Received:  05 February 1996      Accepted manuscript online: 
PACS:  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  75.50.Ee (Antiferromagnetics)  
  64.70.K-  

Cite this article: 

DU AN (杜安), WEI GUO-ZHU (魏国柱) THEORETICAL CALCULATION OF THE MAGNETIC PROPERTIES IN DISORDERED GROUND STATE FOR SPIN-1/2 ANTIFERROMAGNET 1997 Acta Physica Sinica (Overseas Edition) 6 212

[1] Green's function Monte Carlo method combined with restricted Boltzmann machine approach to the frustrated J1-J2 Heisenberg model
He-Yu Lin(林赫羽), Rong-Qiang He(贺荣强), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2022, 31(8): 080203.
[2] Gauss quadrature based finite temperature Lanczos method
Jian Li(李健) and Hai-Qing Lin(林海青). Chin. Phys. B, 2022, 31(5): 050203.
[3] Structure and frustrated magnetism of the two-dimensional triangular lattice antiferromagnet Na2BaNi(PO4)2
Fei Ding(丁飞), Yongxiang Ma(马雍翔), Xiangnan Gong(公祥南), Die Hu(胡蝶), Jun Zhao(赵俊), Lingli Li(李玲丽), Hui Zheng(郑慧), Yao Zhang(张耀), Yongjiang Yu(于永江), Lichun Zhang(张立春), Fengzhou Zhao(赵风周), and Bingying Pan(泮丙营). Chin. Phys. B, 2021, 30(11): 117505.
[4] LnCu3(OH)6Cl3 (Ln = Gd, Tb, Dy): Heavy lanthanides on spin-1/2 kagome magnets
Ying Fu(付盈), Lianglong Huang(黄良龙), Xuefeng Zhou(周雪峰), Jian Chen(陈见), Xinyuan Zhang(张馨元), Pengyun Chen(陈鹏允), Shanmin Wang(王善民), Cai Liu(刘才), Dapeng Yu(俞大鹏), Hai-Feng Li(李海峰), Le Wang(王乐), and Jia-Wei Mei(梅佳伟). Chin. Phys. B, 2021, 30(10): 100601.
[5] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[6] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[7] Exact solution of the Gaudin model with Dzyaloshinsky-Moriya and Kaplan-Shekhtman-Entin-Wohlman-Aharony interactions
Fa-Kai Wen(温发楷) and Xin Zhang(张鑫). Chin. Phys. B, 2021, 30(5): 050201.
[8] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[9] Some experimental schemes to identify quantum spin liquids
Yonghao Gao(高永豪), Gang Chen(陈钢). Chin. Phys. B, 2020, 29(9): 097501.
[10] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[11] High pressure synthesis and characterization of the pyrochlore Dy2Pt2O7: A new spin ice material
Qi Cui(崔琦), Yun-Qi Cai(蔡云麒), Xiang Li(李翔), Zhi-Ling Dun(顿志凌), Pei-Jie Sun(孙培杰), Jian-Shi Zhou(周建十), Hai-Dong Zhou(周海东), Jin-Guang Cheng(程金光). Chin. Phys. B, 2020, 29(4): 047502.
[12] Quantum coherence and correlation dynamics of two-qubit system in spin bath environment
Hao Yang(杨豪), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2020, 29(4): 040303.
[13] Discrete modulational instability and bright localized spin wave modes in easy-axis weak ferromagnetic spin chains involving the next-nearest-neighbor coupling
Jiayu Xie(谢家玉), Zhihao Deng(邓志豪), Xia Chang(昌霞), Bing Tang(唐炳). Chin. Phys. B, 2019, 28(7): 077501.
[14] Quantum steering in Heisenberg models with Dzyaloshinskii-Moriya interactions
Hui-Zhen Li(李慧贞), Rong-Sheng Han(韩榕生), Ye-Qi Zhang(张业奇), Liang Chen(陈亮). Chin. Phys. B, 2018, 27(12): 120304.
[15] Modulational instability, quantum breathers and two-breathers in a frustrated ferromagnetic spin lattice under an external magnetic field
Wanhan Su(苏琬涵), Jiayu Xie(谢家玉), Tianle Wu(吴天乐), Bing Tang(唐炳). Chin. Phys. B, 2018, 27(9): 097501.
No Suggested Reading articles found!